FAILURE OF TEA ROSES.

habits of fuller's rose beetle. - (Ara
 by prof. c. v. rmey.

Within the last five or six years frequent complaints have been made of the failure of tea roses, the cultivation of which has become a very important and lucrative branch of flower culture. This failure has recently been ascertained to be due to the larva of a little gray snout beetle, belonging to the family Otiorhynchiden, and shown in its different stages in the accompanying figure.
Mr Peter Henderson, of Jersey City Heights, N. J., has himself suffered very much from the work of this insect, and I have had considerable correspondence with him during the winter upon the subject. The following quotation is from one of my letters replying to his inquiries:
" The first knowledge which I obtained of this insect was through our mutual friend, Mr A. S. Fuller, who sent me specimens in 1875, the species being then undescribed. In 1876 it was described under the name of Aramigus
by $\operatorname{Dr~G~H.~Horn,~in~the~proceedings~of~the~American~}$ by $\operatorname{Dr} G \mathrm{H}$. Horn, in the proceedings of the American
Philosophical Society, vol. xv., page 94. Mr. Fuller liad found it in greenhouses, and somewhat injurious to camellias. It seems to be quite widespread, occurring from the Atlantic at least as far west as Montana, and its habit of injuriously affecting roses and other greenhouse plants must be looked upon as a comparatively recent acquirement. Such instances of newly formed habits are constantly presenting themselves to me in my studies of insects. The beetle seems to be purely American, and the genus Aramigus was, in fact, erected for it and another species (Aramigus tessellatus) of about the same size, but of a silvery white color, with faint green hue, which I have found in Kansas upon the well known 'resin weed.' The beetle belongs to the same family and is pretty closely allied to a well known European beetle (Otiorhynchus sulcatus, Fabr.), which is larger and darker in color, and is also very injurious to greenhouse plants, as well as to some grown out of doors. This species also occurs in this country, as I have specimens that were taken in Massachusetts. It is the habit of all these beetles, so far as their habits are known, to work in the roots of plants while in the larva state, just as your aramigus does. The eggs are doubtless laid upon the roots by the female beetle, which burrows into the ground for this purpose. Upon inquiry I find that what is evidently this same beetle has been more or less injurious to roses in and about Washington, and that Mr A. Jardin was obliged to give up the growth of tea roses here, a number of years ago, on account of its injuries."

In Bennet's excellent essay on "Rose Growing in Winter," he fails to mention this insect among the "causes of failure." Mr Henderson does not hesitate, in a recent number of the Gardener's Monthly, after a thorough investigation of the subject, and a correspondence with some of the best rose growers in six different States of the Union, to express his belief that in a large majority of cases failure is due to this insect alone.
The only remedy that has been employed hitherto is to persistently catch and destroy the perfect insects, and the experience of Mr. John May, who has for five years been fighting it in this way at Madison, N. J., is to the effect that no substance will destroy the insect in its larva state without at the same time injuring the plant.
A study of the habits of this insect, which I have been able to make through the courtesy of Mr. Henderson, who sent me abundant material, enables me to add to his excellent account some facts that are both interesting and of a practical value. The most serious injury is done by the larvæ, which feed principally upon the more tender rootlets, and thus attack the plant in its most essential parts. This work being underground, is so insidious as to easily account for the fact that it has been generally overlooked.
I have had a quite healthy rose bush totally destroyed in three weeks' time by about three dozen of the larvæ, which were placed in the pot containing it. The symptoms that are manifest above ground when the grub is at work are partial stagnation of growth, weak pale shoots, and generally barren flower buds; and when these symptoms manifest themselves strongly a number of the grubs will be found if the plant be dug up and shaken. The parent beetles, like most other snout beetles, live for a considerable time, as I have kept them in confinement for nearly three months. They are nocturnal in habit, being quite active and feeding only after dusk. They shun the light during the daytime, and hide under the leaves or cling tightly to the branches or in some fork near the base of the plant, always in such position as not easily to be observed. Upon disturbance they drop to the ground, draw up their legs, and 'play 'possum," remaining motionless for some time, and looking very much like a small lump of dry earth, the color adding greatly to the resemblance.
This habit of simulating death upon disturbance is common to many other insects of this family. They feed upon the leaves, but do more injury by severing them than by the amount of foliage consumed. The eggs are laid in flattened batches, consisting of several contiguous rows, and each batch containing from 10 to 60 . The individual egg is smooth, yellow, ovoid, and about 1 mm . in length. The female shows a confirmed habit of secreting her eggs, which are thrust between the loose bark and the stem, especially at the
base just above the ground. In the twenty base just above the ground. In the twenty odd batches which I have examined they have invariably been thrust either between the loose bark and as above described, or into any other crevice that could be found; as, for instance, that
formed by some paper around the edge of the bell glass in goods in sailing vessels, wia the Cape, not later than F'ebruwhich some of my experiments were made. More rarely ary, 1880. Goods from the Pacific slope and parcels of great they are laid between the earth and the main stem just at the value and small bulk may be shipped via San Francisco by surface of the ground. The eggs are so firmly glued to- the Pacific Mail Steamship Company, which runs a monthly gether and to the place of deposit that they are not easily line of steamers from San Francisco to Sydney. Show cases; seen, and are with extreme difficulty detached. It is for shelving, belting, etc., may be procured in Melbourne at this reason that they have escaped the notice of rose cul- low rates, at the cost of the exhibitors.

These eggs require about a month to hatch, and the new born larva, which is of a pale yellowish color, with light brown mouth parts, is quite active, and immediately burrows into the ground, and acquires, very soon after, a bluish hue. Just how long this larva requires to attain full growth I have not been able to ascertain, but, in all probability, it remains at least one month, and probably several more, in the ground, where the pupa state is finally assumed.

Aramigus Fulleri.- - , larva; b, pupa; c, beetle, side view; \boldsymbol{d}, same, dor-
sal view, the outline between showing natural size; e, eggs, enlarged and natural size f, left maxilla of larva, with palpus; g, underside of head; h, upper side of same, enlarged (after Riley.)

On The Fallacy of Refrigerating Ships for the

Destruction of Yellow Fever Germs.

There are reasons to believe that. it is well nigh impossible to eradicate by refrigeration the spores of yellow fever rom the holds of thoroughly infected ships; although, with the frosts of autumn, yellow fever generally disappears from districts where it has been epidemic. We can philosophically reason to this conclusion by comparison of the conditions with those of other more familiar phenomena of heat ; and cold.

The window pane of a heated room on a cold day, supplies more nearly than any other familiar example, the peculiar conditions under which the refrigeration of ships has been, and save exceptional cases, must be attempted, and a lesson or two from the pane cannot fail to be of service. The temperature of the window pane, when the frost upon it melts, must be the temperature of melting ice, and an exact compromise between the external and the internal temperature -the one much below the freezing point, the other much above. Similar conditions apply to the hull of the ship, aggravated greatly by its irregular inner surface.
In the case of a ship, floating in a medium, the temperature of which is far above freezing, or as may be the case in the Gulf of Mexico, at from 60° to 75° Fah. (U. S. Coast Survey, 1857, 102), although the general temperature of the air in the interior of the ship may be considerably below freezing, even enough so for the deposition of frost upon ob jects contained therein, it is no evidence that the cracks and crannies which are nearest or next the skin of the ship will be thoroughly refrigerated, but on the contrary, they will constantly have their temperature restored to them by convection of heat from the water lying against the wall of the ship, and were it possible for frost to collect upon the sides of the ship, it could completely overlap such crannies without reducing the inclosed air or substance to the freezing point.

It may, then, be asserted that it is practically impossible to so thoroughly absorb the heat from these interstices as to make the destruction of the spores a matter of certainty. The thermal condition of the hold of a ship under process of refrigeration, even supposing that a thorough circulation of cold currents could by any possibility be established, is no evidence that it is not possible for yellow fever germs still to exist there. It is reasonable, then, to suppose that the cause of the recent failure to disinfect by refrigeration a government ship, which was obliged to return to port on government ship, which was obliged to return to port on
account of the fever again breaking out after the vessel had account of the fever again breaking out after the vessel had
been thoroughly treated by the freezing process, may be re-ferred to the circumstances above given.
Owing to essential differences in construction, iron ships are more especially subject to these conditions than wooden ones; but there exists, even in the case of wooden ships, but little encouragement for perseverance in this method.Science Observer.

A Rapid Voyage.

The fastest long distance run on record is that of the English mail steamer Durban, Union Steam Company, Capt. A. S. Warleigh, with telegrams from the seat of war at the Cape. The Durban left Table Bay a little before 8 P.M., April 1, and averaged 298 miles a day to Madeira, where a stop of $41 / 2$ hours was made on the 14th day. Plymouth, stop of $41 / 2$ hours was made on the 14th day. Plymouth,
England, was reached at 6 P.M., April 20 . The entire disEngland, was reached at 6 P.M., April 20 . The entire dis-
tance, about 6,000 miles, was made in 18 days 16 hours, actual steaming, or an average of 13.1 knots the whole voyage. Much better time has been made across the Atlantic, but this is the best on record for so long a distance.

Dr. Landerer, a Hungarian naturalist, writes from Athens that a dead African eagle, Gypactes barbatus, was lately found at Maina, on the southern Greek coast. On examining the bird an iron headed arrow over a foot long was found transfixed under one of the wings. Evidently the eagle had been fired at and struck in Africa by some native, and had borne the arrow in its body in its flight over the Mediterranean until it felldead from exhaustion on touching land at Maina.

Nuts.

It is estimated that there are in the United States over 400,000 railway cars of all kinds, also 16,000 engines. These engines and cars in traveling over the roads lose annually between four and five million of nuts. These will weigh over $1,500,000 \mathrm{lb}$., and their cost is between $\$ 30,000$ and $\$ 40,000$, and this loss is continued from year to year, saying nothing of the nuts thrown into the scrap heap, with their nothing of the nuts thrown into the scrap heap, with their
bolts worthless from the use of the jam nut, also the liability bolts worthless from the use
to accident from loose nuts.

A Larae shoe manufacturer of New York State recently advertised in Boston and New York for 25 shoe fitters to work in his factory. He was ready to pay full current rates and furnish steady work, but had only one application. Apparently there are no large body of shoemakers out of employment.

