An improved edging tool for leather working has been patented by Mr. Zenas B. Putnam, of Thomaston, Me. The invention consistsin a flat cutting blade fitted to a handle, and carrying an adjustable gauge arm, to which is attached a gauge plate that acts as a guide for the knife.
A hog holder, consisting of a stout rod bent into a loop with crossed legs, and having hooked ends, to which is attached a cord or chain, has been patented by Messrs. John R. Wilson and Wilson M. Baker, of Urbana, O. The chain or cord is placed in the hog's mouth, and the loop is turned, forming a hitch over the hog's nose.

An improved hog ring and ringing implement has been patented by Mr. Anthony St. Mary, of Decatur, Ill. The ring in its central section is single, and it widens out toward each end into a two-pronged fork, the prongs being sharpened to facilitate penetration through the septum of the nose. The ringing implement is especially designed for applying this form of ring.
Mr. William Hart, of Berea, Ky., has devised an improved butter stamp, consisting of a cylinder containing a piston which is moved by a screw, so that the thickness of the print can be exactly gauged and its weight indicated.
An improved atmospheric churn dasher, constructed so as to confine a quantity of air while descending, and to allow it to escape and pass through the cream when it begins to ascend, has been patented by Mr. Moses Ray, of Valley Grove, West Va.
which the manuscript projects, the uncopied portion of the manuscript being contained by the tube.
An improved harness coupling, consisting of a T shaped head provided with an eccentrically grooved neck or shank, and adapted to receive and hold a suitable hook, has been patented by Messrs. Frank Reynolds \& G. D. Hayes, of Shelby, Iowa.
Mr. James Stephens, of Canisteo, N. Y., has patented an improved extension table, which may be lengthened or short ened, and its leaves properly adjusted to either condition without removing them.
Mr. Jean A. Hitter, Jr., of St. Martinsville, La., has pa tented an improvement in printing telegraphs, in which a type writing machine, previously patented by him, is combined with an arrangement of magnets and telegraphic ap paratus.

THE EXETER STEAM ENGINE.

The accompanying cut represents the steam engine made by the Exeter Machine Works, and gives a good idea of its construction and general appearance. The larger engines are similar to the one shown, varying only in those particulars essential to their increased size. They are made from entirely new patterns; and the manufacturers claim that they combine all that is esirable in a steam engine.
The cylinder is accurately bored, and made of more than the ordinary thickness. It is capable of being rebored a

America. If the cost of importation fell below the cost of production at home, the ruin of British agriculture was not fardistant. Liberals, such as Messrs. Brassey, MacDuff, and Duff, blamed the British land system and the game laws for the depression. Their arguments were summed up in a speech by Mr. Bright, who warned the land-owners that the competition of the United States would go on increasing, and the only way of meeting it was to get rid of the stupid and mischievous legislation regulating the tenure and trans fer of land. Messrs. MacIver and Bentinck advocated protective measures, but both the Marquis of Hartington and the Government-as represented by Viscount Sandon (Con servative), member for Liverpool, and Sir Stafford Northcote, Chancellor of the Exchequer-declared that no cause had been shown for such measures, which certainly would never be sanctioned. The Marquis of Hartington attributed the depression primarily to the bad season.
The anxiety felt in England with regard to American competition in agriculture is almost paralleled with regard to manufacture. An influential London journal points out that he natural inference to be drawn from recent commercia statistics is, that while American manufacturers are gradu ally monopolizing the whole of their own markets, and thus ousting from them English merchants, they are also attack ing with not a little success the chief centers of demand in Europe. "This latter theory receives support from the fact that in 1878 the States sent abroad cotton, iron, and steel

THE EXETER STEAM ENGINE.

Mr. James L. Sprague, of Minneapolis, Minn., has patented an improved rotary churn, having a concave cover provided with air tubes, and having a dasher which propels the cream from the ends of the churn toward the center. The inventor claims that this dasher is much more effective than those of the usual design.
An improved milk cooler, patented by Messrs. Charles L. and Sanford P. Bacheller, of Canton, N. Y., consists in the combination of three concentric pans, provided with connecting pipes, a waste pipe, and water faucet. The pan is mounted on a pivot, so that it may be turned to bring every part of it within reach.

Mr. Gideon E. Wolcott, of De Kalb, Ill., has patented an improved riding plow, which is calculated to cut a uniform furrow in all kinds of plowing, and will turn the last furrow in finishing up the land as evenly as the other furrows. The plow is provided with two oblique furrow wheels, and is ranged so that it may be readily adjusted to its work.
An adjustable window protector and ventilator, patented by Mr. J. L. Walton, of Bolton, Miss. It may be applied to windows of various widths, and it consists of a lattice formed of bars pivoted together diagonally, and having at the ends pivoted jaws and standards to support it in the window.
Mr. George H. Hull, of Montello, Wis., has patented an improved insect destroyer, particularly intended for destroying potato bugs. It consists in a syringe and reservoir combined, so that a constant quantity of the liquid is supplied to the syringe.

- Mr. William B. Brown, of Wheat Ridge, Ohio, has patented an improved ventilator for removing vapors and foul air from kitchens, school rooms, and other places. It may be adapted to the ceiling of any room.

An improved copy holder has been patented by Mr. Chas. S. Caldwell, of Wichita, Kan. It consists of a sheet metal tube provided with a longitudinal opening, through
number of times, still leaving ample strength for hard work. The cylinder is connected with the main bearing by a rigid casting, which, with the slides, forms one piece, giving the maximum strength and stiffness, and keeping the slides always "in line." The slide casting is separate from cylin der.
The piston rods and valve rods are made of steel, and move through composition bushings. We are informed that only the best of materials are used; and where it will add to the efficiency or durability of the machine steel is always used.
As regularity of speed is of the utmost importance in the economy and durability of the steam engine, especial attention has been given to this point; and the makers have provided a governor which maintains a uniform speed under varying load. These engines are very simple, economical in the use of fuel, and may be run successfully by persons of limited experience. Thesmaller sizes, when used in connection with the "Exeter boiler," do not require the services of a regular engineer.
Further information may be obtained from Exeter Machine Works, 50 Federal Street, Boston, Mass. The manufactory is located at Exeter, N. H.

American Competition in England.

In a recent discussion in the House of Commons, relative to the appointment of a royal commission to inquire into the causes of the agricultural depression and how far they were created by or are remediable by legislation, all sides agree that a great cause of the depression was American competition. Mr. Chaplin said he regarded free trade as a question definitely settled, but he could not shut his eyes to the failure of many of the predictions of the advocates of free trade He did not propose a remedy now, but only asked for an in quiry. He pointed out that the future fate of British agri culture was dependent upon the cost of production in
manufactures to the value of nearly $£ 1,000,000$ sterling in excess of the previous year's exports. Within a comparatively short period the markets of Europe knew no Yankee products under these heads, except a few miscellaneous ' notions,' which had no appreciable infiuence on current rates. True, the quantity exported still remains insignificant compared with what we ourselves send abroad. But every rade must have a beginning, and it must be confessed that Cousin Jonathan has made a very good start in foreign business. In cotton, especially, he seems determined to make the most of his advantages, for the quantity produced in the States last year was very nearly double what it amounted to in 1870, although trade was supposed to be utterly stagnant in every branch."

Phosphate of Potash as a Condiment.

Professor Galloway proposes the use of phosphate of potash as a condiment, especially where much salt meat is eaten. He points out that phosphate of potash is the principal material extracted from meat in the process of salting and holds it evident that it ought to be replaced to give the salted meat its original nutritive value. He also suggests that phosphate of potash will be more useful than lime juice in preventing scurvy. It would be interesting to know whether the Arctic plants, which are such a specific for scurvy, are in this salt.

The shad hatching camps on the Hudson below Albany were closed Thursday, June 19. It is said that more shad fry have been put into the Hudson this year than ever before. It is also reported that Mr. Seth Green has found a new fish parasite which preys uponbrook trout and suckers, eating holes in their sides. It looks like a bat-shaped drop of jelly, and would naturally be mistaken for a little swelling under the skin,

Advantages of a Mechanical Education.
In this age of iron and steam, the young man who thoroughly understands the nature and manipulation of the former, and the scientific and practical management and appli cation of the latter, need not long be without lucrative employment; provided, of course, he has the moral and physical qualifications for a position of responsibility and trust. cal qualifications for a position of responsibility and trust.
While it is true that a large number of the prosperous manuWhile it is true that a large number of the prosperous manu-
facturers and contractors of this country have never had the advantages of a so-called technical education, such as is afforded by a mechanical college, yet the day is fast approaching, when, as now in Europe, our large industrial establishments, and our boards of public works, will demand a scientific and technical education of the men who direct these undertakings.
As our country grows older men will pay more and more attention to an education which fits them for some definite pursuit in life, and their entire educational course will be framed with this particular object in view. A bent for mechanical pursuits usually manifests itself at a very early period in life; the inclination of the six-year old boy to hammer and pound, to tear open toys and clocks to "see what makes 'em go," all so annoying to the careful parent, may be taken as indications of latent constructive genius, although now manifested in a very destructive form.
In the youth the mechanical bias becomes still more apparent, manifesting itself in attempts to construct wagons, boats, gig saws, small engines, etc. With such a boy a mechanical education is no doubtful experiment; talk to him about it, and he wasts to go to a mechanical college at once, where he may learn to be indeed and in truth a competent mechanical engineer.

Just at this point, well-meaning parents, in order to fulfill some preconceived plan, or to do what seems to them prospective of most good for the son, endeavor to force him into some other line or profession, and thus make a third rate lawyer, doctor, or merchant, out of a boy who would have certannly made a first rate mechanic. Of course there is a vast difference between a merely whimsical tinkerer and a youth with undoubted mechanical proclivities; and an observing parent or experienced teacher would have no difficulty in making the distinction. A few queries put by a judicious technical educator would soon reveal the young man's inherent prejudices, and enable him to judge whether the candidate possessed a promising foundation for a mechanical education.
Such a foundation consists mainly in an aptitude for mathematics, a good idea of form and construction, a ready insight into mechanical movements, a positive love for machine manipulation, and a tendency to improve every pos. sible opportunity to witness machinery in motion, coupled with a desire to see into and learn its office and applications.

The above is from Leffel's News, to which the editor adds:
There are numerous excellent institutions in this country in which a youth of the character we have described can get the education requisite to develop his natural powers and to fit him to fill a useful and profitable position in the field of practical mechanics; to enter the list as an inventor, or, in time to super:ntend important public works.

Among these institutions might be named Columbia College, New York City; Stevens Institute of Technology, Hoboken, New Jersey; Cornell University, Ithaca, New York; Rensselaer Polytechnic Instiitute, Troy, New York; Ohio State University, Columbus, Ohio; and Illinois Industrial University, Champaign, Ill. All of these institutions publish catalogues giving schedule of studies, terms of tuition, cost of living, etc.

Of the students recently graduated from one of the above named institutions-the Stevens Institute of Technologyone is now engaged in a steam-heating and ventilating establishment; another has a position on the Michigan Southern Railway; another is employed as instructor in the Institute; another as a consulting engineer; another in the Midvale Steel Works; another as assistant editor of a technical publication; another in the Franklin Paper Mills; another in the engincer corps of the United States navy; another in the car-shops of the Pennsylvania Railway; another in the manufactory of brick machinery; another as professor of engineering at Yeddo, Japan; another at ship-building works in St. Petersburg, Russia, and another on a survey and exploration of the Western Territories.
The course in the institution just named is somewhat exacting, as indeed it must be to turn out men capable of filling such positions as we have named, but the earnest student has the advantage of association with those who are as enthusiastic as himseff, and, as he gets into the higher classes, the dilettanti drop out, and those who have in them the stuff out of which competent and successful mechanical engineers are madc, move forward to graduation and go out to assume the duties of their rocation thoroughly prepared for their life work.

Magnesium Steel.

Magnesium also causes a remarkable change of strutcure in other metals. A coarse-grained steel becomes fine-grained on the addition of one-fifth per cent. of magnesium. In performing the experiments referred to, the magnesium must be introduced through a hole in the cover of the crucible after the oxygen has been first removed by the addition of a few pieces of charcoal. Without this pre. caution violent explosions are apt to occur.-Ber. d. Chem.

PROGRESS AT MENLO PARR.
Mr. Edison has wisely kept his own counsels of late, so hat very little is known outside of his laboratory as to what goes on within. Occasionally the public gets an idea through the publication of one or two of the scores of patents pending and complete; but these not indicate the real nature of the improvements that are maturing and soon real nature of the in
The electric light and the various matters pertaining to it engross the attention of Mr. Edison and the majority of his assistants; but just at present the electro-chemical or loudspeaking telephone is being made ready for the market. It is a wonderful advance in telephony. It talks as loudly as the natural voice, and repeats the words louder than they were originally uttered at the distant station. As the construction of this curious instrument was described in these columns in detail some time since,* it will be unnecessary

o repeat the description here. The telephone depends for its results on the varying friction upon a rotating chalk cylinder, of a platinum faced arm attached to the mica diaphragm of the instrument; the variation in friction being due to electro-capillary or electro-chemical action upon the surface of the chalk effected by an undulatory electrical current proceeding from the secondary wire of an induction coil whose primary is in circuit with a carbon transmitter. Mr. Edison discovered some peculiar freaks in the receiving instrument which at first puzzled him; but on connecting the binding posts of the telephone with a galvanometer, he found to his surprise that the chalk and platinum rubber of the telephone formed a generator of electricity of no mean order, as it equaled in electromotive force a half of a Daniell cell. He therefore arranged four of the chalk cylinders upon a non-conducting shaft, and connected the platinum rubber of one chalk cylinder with the metallic boss of the next, the terminals being a rubber on one end, and a spring tonching the metallic boss of the chalk cylinder at the other end. A series of four chalk cylinders thus mounted and connected (as shown in Fig. 1) is equivalent to two Daniell cells, but the power varies somewhat with the speed at which it is rotated. Mr. Edison is investigating the action of this peculiar battery. He finds that its resistance is 1,200 ohms when at rest, and only 50 ohms

Fig. 2.

when in motion: this is for $1 / 8$ inch metallic surface on the rubber. When this surface is increased to $11 / 2$ inch the resistance will be reduced to 1 ohm . Whether the current is due to the decomposition of the solution with which the chalk is moistened, or whether it is due to capillarity or some other cause, has not been definitely determined.
Mr. Edison, in speaking of the electric light, says with a great deal of emphasis, that the system of lighting by incandescence is correct theoretically and practically. It is being perfected in detail, and will before long be exhibited to the public. It would seem from what is at present being done in the Menlo Park laboratory that there are hundreds of points in the problem of electric lighting that have not been considered by experimenters;among these are the propertreat
ment of the metal or mineral to be subjected to the intense heat required to bring it to incandescence; the insulation and protection of the electrical conductors; the meter for the measurement of the current; and the generator of electricity, which is, after all, the most vital point in the system. Much of the detail of the system has been perfected. The machine which is to supply the current has been completed, and is now undergoing a series of tests to determine its efficiency. Ninety-six per cent of the power applied to the machine is realized in the electric current, and 82 per cent of the power is made available outside of the machine. This is about double the effective exterior current realized by other machines. We hope to give our readers a description of the generator as soon as the tests are completed.
In endeavoring to measure the power required to drive the generator Mr. Edison has tried every dynamometer within reach, and condemned them all. At last, after considerable experiment, he hit upon the simple contrivance shown in Fig. 2. He claims that with this apparatus he can measure the $\frac{1}{10}$ of a horse power. The weighted box rests on the platform scale, and is provided with a pulley for receiving the driving belt, which passes over the driving pulley, A, under the tightener, C, and over the driven pulley, B. The number of foot pounds of power use will be indicated by the lifting of the box and the consequent lightening of the load on the scale. Five per cent is deducted for the angle of the belt and for friction.
Mr. Edison's dynamometer is certainly very simple and effective, but it is in principle something like other dynamometers, employing a weight as a measure of power.
As an evidence of the faith of Mr. Edison and his colleagues in the system of lighting by incandescence, we mention the fact that they have prospectors searching for platinum in all the mining regions of the country.
Mr. Edison is confident that the metal exists in largequantities in this country, and he has sent out circulars which read as follows:
$\left.\begin{array}{c}\text { From the Laboratory of T. A. Edison, } \\ \text { Menlo Park, N. J., U. S. A. }\end{array}\right\}$
Dear Sir: Would you be so kind as to inform me if the metal platinum occurs in your neighborhood? This metal, as a rule, is found in scales associated with free gold, generally in placers.
If there is any in your vicinity, or if you can gain information from experienced miners as to the localities where it can be found, and will forward such information to my address, I will consider it a special favor, as I shall require large quantities in my new system of electric lighting.
An early reply to this circular will be greatly appreciated.
Very truly, Thomas A. Edison.

Menlo Park, N. J.

Specimens of platinum and iridosmine sprinkled upon a card were sent with these circulars. The difference in the metals is easily detected with a microscope or magnifying glass.
Many replies, inclosing samples of platinum, have already been received at Menlo Park, and the metal has been found in situ in two places. Mr. Edison has a stamp mill and all the apparatus required for reducing ores of various kinds. His facilities for reducing refractory ores and metals are particularly good.

American Produce Exported into Scotland.
The landings of cattle, fresh and cured meats, and dairy produce at Glasgow, from New York and Canada, during the month of May, show, according to the London Grocer, a considerable falling off as contrasted with the imports in the corresponding period of last year. There were 435 live cattle and 843 live sheep brought over, being 215 cattle and 659 sheep fewer than in May, 1878. Of fresh meat there were 3,250 quarters of beef, and 650 carcasses of mutton, aganst 7,200 and 475 quarters and carcasses respectively in the same month last year. There were also 3,550 cases of preserved meats, 4,446 packages of bacon, 300 barrels of pork, and 1,900 tierces of beef and hams. Excepting in pork, the import of which was about one-half greater, all the other commodities aggregated not much over one-half the imports during the same month of 1878 . The same may be said with regard to the imports of butter and cheese, of which there were 7,561 tubs of the former and 11,200 boxes of the latter, as compared with 10,000 tubs and 30,000 boxes in May of last year. The landings of lard and tallow aggregated 3,000 tierces last month, being a falling off to the extent of fully one-half.

The Cental System.

The Committec on Trade, in a report to the Board of Managers of the New York Produce Exchange, suggest October 1, 1879, as a suitable day for the introduction of the cental system in all transactions in produce bought and sold by weight. The committee recommend that the dif ferent trades represented in the Exchange be requested to so arrange their business that all their dealings in grain, flour, meal, provisions, lard, tallow, butter, cheese, petroleum, naval stores, oils, hay, salt, seed, dried fruit, live and dressed stock, freight, storage, and all other articles of produce that are or may be dealt inon the Exchange, and insur ance thereon, shall, on and after the date named, be exclusively on the basis of weight, the unit of transactions to be the pound avoirdupois, and the multiple thercof to be the: cental or 100 pounds avoirdupois.

