Sumtitu Amman.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. B'Y PARK ROW, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postane included....
One cops,

 The Scientife AUNN \& Co., 37 Park Row, Ne

Sclentific American Export Edition.
TIFIC AmeR

VOL. XLI., No. 3. [New Series.] Thirty-fifth Year. NEW YORK, SATURDAY, JULY 19, 1879.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 185.
For the Week ending July 19, 1879. Price 10 cents. For sale by all newsdealers.
ENGINEERING AND MFCHA NICS.-Car Building. Res NGNERLNGAND, AMCAMCS,-Gar Building. Resume of

 By frsatal Extracted from
IV. ELECCRIICTYY, LIGHT. HEAT, ETC.-Refraction of Dark Heat.

 Dr. Matrin
ture of easnt
ture of benzoin

Viil. THE FARM AND STABLE.-Worn out Pastures. Hogs as farm

alum in baking powders.

In the current issue of the Scientific American Supplement will be found a communication from G. E. Patrick, Professor of Chemistry in the University of Kansas, giving details of a series of practical tests to determine whether the hydrate of alumina is dissolved by the gastric juice. The question has a vital bearing on the discussion as to the safety of using alum in baking powders. Professor Patrick attacks it without prejudice, by strictly scientific methods, and arrives at results which are certainly gratifying in view of the wide use of alum powders in our kitchens.
Professor Patrick takes his text from the published opinion of a prominent physician, who says, after stating the difficulties attending a thorough mixture of the ingredients of alum baking powders:
"But even if the exact proportions were maintained, the salts formed would retain their injurious properties, as they would dissolve in the gastric juice. The gastric juice contains not only lactic acid, but a large amount of hydrochloric acid, and both the sulphate and hydrate of alumina would
be dissolved." be dissolved.
After testing by reference to authorities the statement that the gastric juice contains a large amount of hydrochloric acid, and finding the weight of evidence to be that the quantity is in reality extremely minute, and that little not free, Professor Patrick proceeds to describe his examination of the practical question whether the hydrate of alumina as powders, will be dissolved in the fluids of the alimentary canal.
This question could be determined only by careful tests with living animals. Professor Patrick found cats to be most available. Having made biscuits with an acknowledged alum baking powder, using twelve times the proportion of powder directed on the labels, and employing for each experiment a distinct sample of powder, he fed the liscuits to cats that had fasted from one to two days. The amount eaten in each case was enough to give at least half a
teaspoonful of powder to each experiment. After allowing teaspoonful of powder to each experiment. After allowing for digestion 20 minutes, 45 minutes, $11 / 2$ hours, 2 hours, and $21 / 2$ hours, respectively, the cats were killed, and the
contents of the stomach and small intestines were carefully examined for dissolved alumina. In each case undissolved hydrate of alumina was found, but of dissolved alumina there was never a trace.
Surprised at the uniformity of these results, and thinking that the organic matter of the flour might have interfered with the solution of the alumina or his detection of it, Professor Patriak made two crucial experiments. In cach, two teaspoonfuls of the powder were mixed with water and baked at the ordinary temperature of the oven. The mass was then fed to a cat (under compulsion) and after a specifled time the stomach and intestines were examined as before. In neither case was a trace of dissolvcd alumina discovered.
Similar experiments were then tried with unbaked (gelatinous) hydrate of alumina. and in both cases a trace of dissolved alumina was found; the inference being that it is not safe to eat dough made with alum powder-it should always be baked. Another important practical point was also suggested-namely, that if bread is carclessly mixed or with insufficient water, some of the powder may remain dry and the alum not changed to the hydrate; in which case the effect would probably be injurious.
In order to test this question, and also to furnish a check on the other experiments with biscuits, Professor Patrick had a batch made in which the mixing was less thorough than usual and with less water. These were fed to cats, and subsequent tests developed in every case a trace of dissolved alumina. These experiments, while proving the rcliability of those first described, go to sho:s, Professor Patrick thinks, that to insure the cntire absence of alum in the bread, the mixing must be done with plenty of water. As
a simple precaution it might be well to mix the batter too a simple precaution it might be well to mix the batter
thin at first, and stiffen it by the addition of pure flour
Tests of this nature are obviously worth any amount theory; and if there is no radical difference between the gastric juices of cats and men, it seems to be conclusively established that alum baking powdèrs may be used without injury to health.

THE CAPTIVE BALLOON AT CONEY ISLAND

Not the least of the many attractions of Coney Island this summer is Mr. Kiag's captive balloon, "Pioneer," the first ascension of which was made on the afternoon of July 1. This balloon is not as large as the Giffard captive balloon at Paris, but is said to be much more perfectly constructed. It is sixty-five feet in diameter, and has a capacity of 150,000
cubic feet. The material is Irish linen in two thicknesses. The basket or car of wicker work weighs 476 lb . Above the balloon is white, to reflect the sun's rays; below it is ornamented with dark red and green, to make it a conspicuous object against the sky. It is inflated with hydrogen, and in calm air shows on the dynamometer a lifting strain of $1,400 \mathrm{lb}$. The gas is made on the spot by Mr. A. O. Granger, by passing steam over hot iron. Wound about the ' drum of a very large windlass is 1,215 feet of $11 / 2$ inch rope, !
through the center of which runs a telephone wire. An through the center of which runs a telephone wire. An
end of this rope is carried through a trench to the center of the inclosure, where, after passing around a pulley, it is fastened to the balloon. The pulley is attached to the foundation by a universal joint of iron, so that, in whatever
on the pulley. A good hold on the sand is secured by the use of four sticks of yellow pine, each 12 feet long and 12 inches square. These are planted horizontally nine feet below the surface, and above them is a well, made of concrete. Across the top of the well lie two other similar timbers, which are strongly fastened to their fellows below by long and thick iron bolts. Mr. King says this foundation will resist a strain of $100,000 \mathrm{lb}$., while the utmost strain that wind and gas united can exert on the connecting rope of the balloon will not exceed $22,000 \mathrm{lb}$.
On its trial trip the balloon ascended three or four hun dred feet, and shortly afterwards a second trip of seven hundred feet was made. At this height the view was pronounced magnificent by the small party making the first venture. All the ocean approaches of New York harbor were at their feet for a radius of thirty miles; and inland hey could see the numerous towns and cities about the bav of New York. Along the Sound to l'lushing, up the Hudson River as far as Tarrytown, and the Orange Valley, Hudson River as far as Tarrytown, and the Orange Valley, and other parts of New Je
Amboy, and Long Branch.

THE TELEPHONE AS A LIGHTNING INDICATOR

Mr. George M. Hopkins, of Brooklyn, N. Y., during a ecent thunder storm connected the gas and water pipes of his dwelling with an ordinary Bell telephone, and discovered that the electrical discharges were plainly indicated, either by a sharp crack or by a succession of taps. This occurred when the discharge was so distant that the thunder was inaudible. The sound also seemed to be perceived by the ear before the lightning could be seen. There was a marked difference in the character of the discharges, some that appeared single to the eye were really multiple. Often the discharges would consist of a scries, beginning and ending with discharges larger than the rest, thus:-
sometimes it would be thus: $-\cdots$, sometimes the re erse, and often a single crack.
The gas and water pipes were used, being the most convenient and at the same time the safest conductors for the purpose. Special apparatus might be devised, having a good ground, and a series of points for gathering the electricity from the air, but in using apparatus of this kind there is always more or less danger.

New Stecl Railuay Bridge.

A new and splendid railway bridge over the Missouri River, built wholly of steel, has lately been completed and opened for traffic by the Chicago and Alton Railway Co. The bridge is located at Glasgow, Mo. The constructing enginecr was Gen. Wm. Sooy Smith. The material was furnished by the Hay Steel Co., of Chicago, and while the structure is stronger than an iron bridge its weight is thirtythree per cent less than it would have been had iron been cmployed. The time of construction was only one year. The cost, $\$ 450,000$. The following are the principal dimensions:
Five spans, $314 \frac{3}{3}$ feet cach, from center to center of piers, three above ard two bclow grade; all steel; depth of truss, 36 feet center to center of pins. Height of through spans above high water, 50 feet. East approach, iron trestle, 210 feet; two deck spans of iron, 140 feet each, 280 fect; west approach, iron deck span, 140 feet; west approach, iron trestle, 510 fect; west approach, wooden trestle, 864 feet total length of the bridge proper (steel) $1,573 \frac{1}{3}$ feet; total length of bridge and approaches, $3,577 \frac{1}{8}$ feet.

The Silver Deposits of Leadville, Colorado.
Says a correspondent of the Boston Advertiser: The ore beds vary from one to forty feet in thickness. They are generally undulating like the waves of the ocean, so that the distance from the surface varies with the undulations. The size of a mining claim is in most cases 300 feet inside by 1,500 feet long, being about ten acres in area. The ore known as "hard carbonates" consists of silver mixed with iron or lead. The soft or sand carbonates resemble common road gravel, yellow and red ocher and gray sand. Chlorides of silver are frequently visible in the hard carbonates. The usual size of a shaft is $31 / 2$ feet by 7 feet, and is substantially timbered. After the ore deposit bas been penetrated, the "main entry," " parallels," and " cross cuts" are excavated, leaving the remaining ore in blocks while the work of exploration is going on. In sinking a shaft we usually penetrate, first, a deposit of gravel or "wash" from 20 to 100 feet in thickness, frequently containing bowlders which have been subjected to abrasion. Not unfrequently a stratum of "cement" a few inches in thickness is encountered, resembling Roxbury pudding stone or an old cemented cellar floor. Next we come to calcite, or porphyry-sometimes soft like 'fire clay," either pure white, gray, or red-ihe latter showing an iron stain. The soft porphyry runs from one inch to several feet in thickness. The hard porphyry is often " pick ing ground" (i. e., porphyry rock, which can be excavated by means of a pick), but frequently it is blasting or "shooting rock." Following the porphyry is iron ore, varying in thickness and sometimes containing a few ounces of silver. Following the iron we find the " pay ore," more or less rich in silver.
The generally accepted theory is, that this region was once covered with a lake, the waters of which held in solution silver, lead, and iron, which were in time precipitated on the bottom of the lake. The porphyry, gravel, etc., were sub-
of disturbance, when by volcanic action or the shrinkage of \mid The difference in the volumes of their chlorides, $\mathrm{KCl}=37 \cdot 4$ the earth's crust the deposits became contorted, sometimes and $\mathrm{NaCl}=27 \cdot 1$, is $10 \cdot 3$, or practically one half the difference tilted or broken like a "chop sea," or gently undulating like the "ground swell" of the ocean.

Farming Implements in Morocco.

An undeveloped yet promising market for farming implements is reported in Morocco by U. S. Vice-Consul John Cobb at Casablanca. In a recent communication that officer, who takes a lively interest in the promotion of American trade, writes that farming implements are much needed in that country, no improvements having been made there in that line since the days of Mohammed the Great, nearly 1,300 years ago. Mr. Cobb believes that our manufacturers will find a large field for operations there, as many of the Moors have money and are particularly fond of useful inventions. Theyare very conservative, however, and must see an article in use or under conditions in which it can undergo a thorough investigation before they can be made to believe in it. American goods are favorably received by them, and can be made to take the lead. Possibly our manufacturers interested in the export trade may find it worth while to correspond with Mr. Cobb.

PECULIAR STEAM WHISTLING.

Some of our river pilots have become so proficient in the use of the steam whistles of the boats under their charge as to be able to make sounds that are almost articulate in their signification of the wishes or the feelings of the pilots.
Recently a large steamboat, well laden with passengers, was unable to reach its dock on account of a row-boatman who, while leisurely rowing about, bad been surprised by the sudden appearance of the steamboat, and in his efforts to get out of its way became confused, and by rowing first one way and then another, annoyed the steamer's pilot; and he, apparently becoming impatient at the delay, expressed his feelings by causing the steamer's whistle to emit a series of short peculiar whistle sounds, which expressed something to the effect of, "Come! come! take one way or another, and get out of my road some time to-day," so plainly that some of the passengers of a neighboring boat noticed it, and one, laughingly referring to the whistling, said: "That is almost equivalent to swearing by steam." The row-boatman seem. ed to understand it, for be immediately took one way and got out of the steamer's course.
And again the other day we heard the steam siren whistle of one boat caused to salute another, in a most laughably sarcastic manner, as if to say: "Why! how do you do?" The pilot of the other boat endeavored to respond in the same tone, but probably because bis boat's whistle was of a different style, he was only able to make it sound sometbing like the first crowing efforts of a chicken.
We have some of the best pilots in the world to manage our river steamboats; and perbaps very few persons think of the great responsibility resting on these men. At times a moment's delay, resulting, perbaps, from sudden sickness or slight mistake of the pilot or engineer, would end in a fearful loss of life and property, and yet accidents rarely occur. We hope, however, that the steam whistling proficiency above mentioned will not lead to any mistakes in regard to the correct interpretation of the established code of whistle signals
L. L. D.

MOLECULAR CHEMISTRY.-No. 4.

H. Schroeder began the study of molecular volumes of solid bodies in 1840, and he bas continued it up to the present time. His views, which bave been repeatedly modified by his researches extending over so long a period, may be stated as follows in their matured form.
In any mechanical fraction of a uniform mixture, or of a compound, the constituents are contained in exactly the same proportions by weight as they are in the whole mass. The same must hold true for the proportions by volume, provided the given substance is bomogeneous. Thus, in detonating gas, made by mixing two volumes of hydrogen with 1 volume of oxygen, we may say that H has the volume 2 and O the volume 1, although in reality both are diffused througbout the space represented by their combined volumes, 3 . When the mixture is exploded we get only 2 volumes of $\mathrm{H}_{2} \mathrm{O}$ instead of 3 . The condensation so produced may be viewed in two ways. We may suppose that the compound is condensed as such, or else that its constituents suffer a change of volume before entering into combination, and that the volume of the compound is the sum of the volumes of its condensed constituents. The law of multiple proportions by weight may thus be made applicable to volumes. Experience bas shown that every element varies so much in volume throughout the series of combinations into which it enters, that the volume of its molecule may be 2,3 , $4,5,6$, etc., times as great in one compound as in another.
Among these numbers the factor 2 predominates just as it does in gases, where, for example, H_{2} is first condensed to 1 volume and then combines with O to form 2 volumes instead of 3 . In the case of solids these condensations of volume seem to depend on the forces that cause bodies to crystallize, since an element belonging to two bodies that have the same crystalline form (isomorphous bodies) is usually condensed equally in both. In other words, the volumes of elements common to a number of isomorphous bodies are generally the same. The volume of potassium (K) found, as has been explained, by dividing its molecular weight by its density, is $45 \cdot 3$; that of sodium (Na) is $23 \cdot 9$; difference; $\mathrm{K}-\mathrm{Na}=21 \cdot 4$.
and $\mathrm{NaCl}=27 \cdot 1$, is $10 \cdot 3$, or practically one half the difference
of the metallic volumes of K and Na . The same result is obtained from the bromides: $\mathrm{KBr}=44 \cdot 3, \mathrm{NaBr}=33 \cdot 4$; difference, $10 \cdot 9$. And from the iodides: $\mathrm{KI}=54, \mathrm{NaI}=43.5$; difference, 10.5 . Now considering the Cl volume the same in both chlorides, the Br volume the same in both bromides, and the I volume the same in both iodides, it is evident that the metals in these compounds have been condensed to one half their original volumes.
When other metals are compared in this manner with their isomorphous compounds it was found that in pairs containing strontium and lead, sodium and silver, magnesium and nickel, aluminum and iron, the heavy metals often entered into combination with their volume unchanged, while the light metals were condensed one half. Schroeder believes that this occurs too frequently to be accidental. In the rhombic sulphates and carbonates of strontium and of lead, in their oxides, in the bromides, chlorides, and iodides of sodium, and of silver, etc., the differences of
volume are equal to the unchanged volume of the heav metal minus one half the volume of the light one.
While comparing the volumes of cumerous compounds in this manner Schroeder was struck by the fact that the oxygen in quartz would have exactly the same volume as the silicon associated with it, on the supposition that the silicon retains the volume that belongs to it in the free state. Finding similar relations in other compounds, he conceived the idea that the molecular volumes of the constituents might bave a common measure of which they are all multiples. To amples will illustrate his meaning:

$\begin{aligned} \text { Volume } \mathrm{KI} & =54.0 \\ \mathrm{NaI} & =43.2 \end{aligned}$	$\begin{aligned} & \mathrm{KCl}=37 \cdot 8 \\ & \mathrm{NaCl}=27 \cdot 0 \end{aligned}$
$\mathrm{K}-\mathrm{Na}=10 \cdot 8$	$\mathrm{K}-\mathrm{Na}=10.8=2 \times 5.4$
$\begin{aligned} \text { Volume } \mathrm{NaI} & =43 \cdot 2 \\ \mathrm{LiI} & =37.8 \end{aligned}$	$\begin{aligned} \mathrm{NaCl} & =27 \cdot 0 \\ \mathrm{~J} \cdot \mathrm{iC:} & =21 \cdot 6 \end{aligned}$
$\mathrm{Na}-\mathrm{Li}=5 \cdot 4$	$\mathrm{Na}-\mathrm{Li}=5.4=1 \times 5.4$
$\begin{aligned} \text { Volume } \mathrm{RbI} & =70 \cdot 2 \\ \mathrm{KI} & =54 \cdot 0 \end{aligned}$	$\begin{aligned} \mathrm{RbCl} & =54 \cdot 0 \\ \mathrm{KCl} & =37.8 \end{aligned}$
$\mathrm{Rb}-\mathrm{K}=16 \cdot \overline{2}$	$\mathrm{Rb}-\mathrm{K}=16 \cdot \overline{2}=3 \times 5.4$

Again, twice the volume of $\operatorname{LiCl}(2 \times 21 \cdot 6)$ is equal to the volume of $\mathrm{NaI}(43 \cdot 2)$; twice $\mathrm{NaCl}(2 \times 27 \cdot 0)=\mathrm{KI}(54 \cdot 0)$, etc. Hence 1 volume $\mathrm{I}=2$ volumes $\mathrm{Cl}, 1$ volume $\mathrm{Na}=2$ volumes Li , and 1 volume $\mathrm{K}=2$ volumes Na . We have found, then, that these substances, as well as their differences, bave a common measure; and this is what Schroeder means by the expression that they have the stere $5 \cdot 4$.
But this is not all. Comparing still further, we get the following differences of volume:

$$
\begin{array}{rlrrr}
\mathrm{RbT} & =70 \cdot 2 & \mathrm{KI} & =54 \cdot 0 & \mathrm{NaI}
\end{array}=43 \cdot 2 \quad \begin{aligned}
\mathrm{LiI} & =37 \cdot 8 \\
\mathrm{RbCl} & =54 \cdot 0
\end{aligned} \mathrm{KCl}=37 \cdot 8 \quad \mathrm{NaCl}=27.0 \quad \mathrm{LiCl}=21 \cdot 6
$$

$\mathrm{I}-\mathrm{Cl}=16 \cdot 2 \mathrm{I}-\mathrm{Cl}=\overline{16 \cdot 2} \mathrm{I}-\mathrm{Cl}=\overline{16 \cdot 2} \mathrm{I}-\mathrm{Cl}=\overline{16 \cdot 2}=3 \times 5 \cdot 4$
In other words, iodine and chlorine have the same stere as the metals with which they are in each case associated. From these and many analogous examples Schroeder has quite recently generalized the proposition: "In every compound a definite volumic measure or stere predominates and causes all the components to subordinate themselves to it." As many isomorphous bodies, such as KCl and NaCl , magnesite and calcite, potassium sulphate, selenate and chromate, have the same stere, it was natural to connect the latter with the crystalline form. Further extensive research has shown, however, that the stere does not depend directly upon the form; that there are isomorphous bodies with unlike, and heteromorphous bodies with like steres. It was found that the stere of a compound is determined entirely by that of one of its elements, which impresses its own stere on all the rest. The fact that isomorphous bodies so often have equal steres is explained by the reason that their controlling elements are also isosteric. Thus the rhombohedric carbonates of magnesia, manganese, and lime, are isosteric because $\mathbf{M g}, \mathrm{Mn}$, and Ca have the same stere. From these observations Schroeder deduces the following law, which he calls the steric law: "In every compound the stere of one of the components predominates, in consequence of the forces active during crystallization, and impresses itself upon all the others." For example, the stere of silver (Ag) is $5 \cdot 14$, one half the volume $10 \cdot 28$, calculated from its density and equivalent. AgCl has a volume of $25 \cdot 70$ or $5 \times 5 \cdot 14$; $\mathrm{AgI}=41 \cdot 1$, or $8 \times 5 \cdot 14 ; \mathrm{AgBr}=30 \cdot 84$, or $6 \times 5 \cdot 14 ; \mathrm{Ag}_{2} \mathrm{O}$ $=30 \cdot 8$, or $6 \times 5 \cdot 14 ; \quad \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Ag}=51 \cdot 4$, or $10 \times 5 \cdot 14$. All these volumes are exact multiples of the silver stere, and consequently the other elements associated with silver must also have assumed volumes divisible by $5 \cdot 14$, as the law requires.
The steres of all the elements hitherto determined lie beween the narrow limits of $5 \cdot 0$ and $6 \cdot 1$. Thus carbon bas a stere of $5 \cdot 11$, which it impresses on a series of organic bodies; phosphorus and arsenic cause most of their compounds to assume the stere $5 \cdot 3$, etc.

In Liebig's Annalen for 1874, and more recently in the re port of the session of the Munich Academy of Sciences, De cember 1, 1877, Schroeder shows the applicability of his law to five important groups:

1. Silicon, quartz, sillimanite, disthene. Stere, 5•65.
2. Aluminum, corundum, chrysoberyl, diospore, andalu
ite. Stere, 5•14.
3. Magnesium, periclase, spinelle, olivine, diopside, humite, and garnets. Stere, $5 \cdot 52$.
4. Oxides and silicates of manganese. Stere, $5 \cdot 52$.
5. Sulphides and arsenides of iron, cobalt, nickel, copper zinc, and lead.

Those who desire more detailed information on these point are referred to the above memoirs, and also to Liebig's $A n$ alen for 1878, and to the Berlin C'iem. Gesell. for May, 1878 A very important corollary follows from Schroeder's law. If bodies combine only in whole volumes or steres, we can determine the molecular constitution of solids, because their molecules must contain a sufficient nuınber of atoms to bring out the volume of each constituent as an entire multiple of the controlling stere. Thus the volume of silicon determined from its density was found to be $11 \% 3$, and its stere is consequently 5.65 . To express the fact that the silicon molecule occupies two steres, Schroeder writes $\mathrm{Si}_{1}{ }^{2}$, the upper right hand exponent representing the number of steres, and the lower the number of atoms. Now the volume of quartz, to which allusion has been made before, is just double that of silicon; consequently it contains four steres, two of which belong to oxygen, and its molecular formula is written $\overline{\mathrm{Si}}_{1}{ }^{2} \mathrm{O}_{2}{ }^{2}$, with a line over Si to show that the compound is controlled or dominated by the silicon stere. In his calcuations Schroeder marks the steres with a line drawn above, and the volumes with a line drawn below the figures; thus, $\overline{\mathrm{Si}}_{1}{ }^{2} \mathrm{O}_{2}{ }^{2}=4 \times \overline{5 \cdot 65}=\underline{22 \cdot 6}$. Take another example:

- Corundum $\overline{\mathrm{Al}}_{2}{ }^{2} \mathrm{O}_{3}{ }^{3}=5 \times \overline{5 \cdot 14}=25 \cdot 7$. This means that in corundum, as in most oxides, each oxygen atom occupies one stere; that aluminum is present with one half its metal lic volume, 10.28
pressesit served volume of all the atoms present; and that the ob umes of five such atoms, two of auminum equal vol xygen.
But this is not all. If the atomic weights are taken in grammes, the volumes will be expressed in cubic centimeters; thus $\mathrm{Ag}_{1}{ }^{2}=2 \times \overline{5} \cdot 14=10 \cdot 28$ means that one atom of silver r 108 grammes occupies a space of $10 \cdot 28$ cubic centimeters, or of two silver steres, each equal to $5 \cdot 14$ c.c.
A few examples will suffice to show the manner of arriving t the molecular formulas of compounds.
The observed volume of chloride of silver is 25.7 , as has been stated before. This is equal to five silver steres ($5 \times$ $5 \cdot 14=25 \cdot 7$). As two of these belong to the silver present, we have left three for the chlorine, and we write $\overline{\mathrm{Kg}}{ }_{1}{ }^{1} \mathrm{Cl}_{1}{ }^{3}=$ $5 \times \overline{5} \cdot \overline{1} \overline{4}=25 \cdot 7$.
The observed volume of iodide of silver is $41 \cdot 12$, or eight times the silver stere. Subtracting two steres for Ag, there remain six for the iodine, and we have $\mathrm{Ag}_{1}{ }^{2} 1_{1}{ }^{6}=8 \times \overline{5 \cdot 14}$ $=41 \cdot 12$.
The observed volume of bromide of silver is 30.84 , or $6 \times$ $5 \cdot 14$. Our formula is, therefore, $\mathrm{Ag}_{1}{ }^{2} \mathrm{Br}_{1}{ }^{4}=6 \times 5 \cdot 14=$ 514.
30.84.

The volumic constitution of the iodides and chlorides of the alkaline metals is determined from the data already given:

Rubidium was found to contain three steres mo:e than po assium; we have, therefore:
$\mathrm{Rb}_{1}{ }^{7} \mathrm{I}_{1}{ }^{6}=13 \times \overline{5 \cdot 4}=\underline{70 \cdot 2} \quad \mathrm{Rl}_{1}{ }^{7} \mathrm{Cl}_{1}{ }^{3}=10 \times 5 \cdot 4^{-}=\underline{54 \cdot 6}$ Again, rubidium was found to have double the volume of ammonium, and we must, therefors, write $\mathrm{Am}_{2}{ }^{7} \mathrm{Cl}_{2}{ }^{6}=13 \times$ $5 \cdot \overline{4}=70 \cdot 2$, or twice the observed volume $35 \cdot 1$. The bromides have been calculated in the same way.
The difference in the densities and volumes of the two varieties of cinnabaris explained as follows: Amorphous black cinnabar is $\mathrm{Hg}_{2}{ }^{5} \mathrm{~S}_{2}{ }^{6}=11 \times 5 \cdot 5{ }^{-7}=60 \cdot 72$, or twice the observed volume $30-36$; while red rhombohedric cinnabar is $\mathrm{Hg}_{2}{ }^{6} \overline{\mathrm{~S}}_{2}{ }^{6}=11 \times \overline{5 \cdot 30}=58 \cdot 30$, or twice the observed volume $29 \cdot 10$. In the black variety the mercury stere predomi nates, while the red is ruled by the sulphur stere.
Scbroeder bas the modesty to call his steric law simply a hypothesis, but he believes that it will force its way into general acceptance; and he concludes his memoir with the following generalstatements. Bodiescombine only in whole volumes having whole steres, just as they have only whole atoms. Simple volumic relations are perceived in gases at equal temperatures and pressures, in liquids at temperatures producing an equal tension of their vapors, and in solids when the steres of their controlling elements are ascertained
C. F. K.

Formation of Coal.

E. Fremy holds that there are several kinds of isomeric cellulose, constituting the skeleton of plants. Coal is not an organized substance. The vegetal impressions presented by coal are produced as in shales or other mineral matters. The chief substances contained in the cells of plants under the double influence of heat and pressure produce bodies having a great analogy to coal. The pigments, the resins, and the fats of leaves, if submitted to heat and pressure, yield compounds which approximate to bitumens. The vegetable matter which gave rise to coal has undergone, first, the peaty fermentation, the coal being then formed by a secondary transformation.
H. W. Wiley finds that one part of uranine in one mil lion parts of water is readily detected by means of the speclion parts

