Remarkable Snow storms in Indla.

Some interesting details of the extraordinary snowfall in Cashmere in 1877-78 are given in a paper in the just issued number of the Journal of the Asiatic Society of Bengal by Mr. Lydekker. Early in the month of October, 1877 ,
snow commenced to fall in the valley and mountains of Cashmere, and from that time up to May, 1878, there seems to have been an almost incessant snowfall in the higher mountains and valleys; indeed, in places it frequently snowed without intermission for upwards of ten days at a time. At Dras, which has an elevation of 10,000 feet, Mr. Lydekker estimated the snowfall from the native account, as having been from 30 feet to 40 feet thick. The effects of this enormous snowfall were to be seen throughout the country. At Dras the well built travelers' bungalow, which had stood some thirty years, was entirely crushed down by the weight of the snow which fell upon it. In almost every the weight of the snow whichfellupon it. In almost every
village of the neighboring mountains more or less of the log village of the neighboring mountains more of 1ess of the log,
houses had likewise fallen, while at Gulmarg and Sonamarg, where no attempt was made to remove the snow, almost all the huts of the European visitors were utterly broken down by it. In the higher mountains whole hillsides have been denuded of vegetation and soil by the enormous avalanches which swept down them, leaving vast gaps in the primeval forests and choking the valleys below with the debrris of rocks and trees. As an instance of the amount of snow which must have fallen in the higher levels, Mr. Lydekker mentions the Zogi Pass, leading from Cashnere to Dras, which has an elevation of 11,300 feet. He crossed this early in August last year, and he then found that the whole of the ravine leading up to the pass from the Cashmere side was still filled with snow, which he estimated in places to be at least 150 feet thick. In ordinary seasons this road in the Zogi Pass is clear from snow some time during the month of June. As another instance of the great snowfall, Mr. Lydekker takes the valley leading from the town of Dras up tothe pass separating that place from the valley of the Kishengunga River. About the middle of August almost the whole of the first mentioned valley, at an elevation of 12,000 feet, was completely choked with snow, which in places was at least 200 feet thick. In the same district all passes over 13,000 feet were still deep in snow at the same season of the year. Mr. Lydekker gives other instances of snow lying in places in September, where no snow had ever before been observed after June. As to the destruction of animal life, in the Upper Wardwan Valley large numbers of ibex were seen embedded in snow; in one place upwards of 60 heads were counted, and in another not less than 100. The most convincing proof, however, of the havoc caused among the wild animals by the great snowfall
is the fact that scarcely any ibex were seen during last sumis the fact that scarcely any ibex were seen during last sum-
mer in those portions of the Wardwan and Tilail Valleys which are ordinarily considered as sure finds. So also the red bear and the marmot were far less numerous thau usual. Mr. Lydekker estimates that the destruction to animal life caused by the snow has far exceeded any slaughter which five or six years.

Women and Girls in English Mines.

It is a somewhat startling fact that there are still nearly 5,000 women and girls employed about the coal mines of Great Britain. In the official summary of persons employed in and about the mines, under the Coal Mines Act, it is stated that 21 femalesunder the age of $13 y$ earsare employed. Of girls between the ages of 13 and 16 there are 433 employed; of young women above the age of 16 there are no less than 4,502 employed. In the mines registered under the Metalliferous Mines Act there is a larger proportionate employment of females. At the tender age of between 8 and 13 years, there are 96 girls employed, chiefly in the Cornwall district; between the ages of 13 and 18, there are 981 girls employed above these mines, Cornwall and the North Wales district employing the bulk; and there are also 1,741 females above the age of 18 employed, Cornwall, North Wales, and Ireland employing all these except 20; and of this score, somewhat singularly, the chief part are employed in the North of England, which has been remarkably free from women's work in the unfit employment of mining. The proportion of women employed is said to be decreasing; but the fact that girls of such tender ages are put to mining operations, or to work "above ground " at the mines, is a sign that the unsatisfactory symptom is not likely to entirely die out.

The Deepest Well in the World.

The sinking of the deep artesian well near Buda Pesth, Hungary, is now completed; the works were commenced as far back as 1868, and during their progress many interesting facts relating to geology and underground temperature have been brought to light. The total depth is 3,200 feet, and the temperature of the water it yields is nearly 165° Fahr. The temperature of the mud brought up by the borer was taken every day, and was found to increase rapidly, in spite of the loss of heat during its ascent, down to a depth of 2,300 to 2,700 feet. Beyond this point the increase was not so marked. At a depth of 3,000 feet the temperature was 177° Fahr., giving an average increase of 1 for every 23 feet bored. Water first commenced to well up at a depth of
3,070 feet; here its temperature was 110° Fahr and from this point onward it rapidly increased both in quantity and temperature. Thus, at 3,092 feet, its temperature had already risen to 150° Fahr., and the yield in 24 hours from
9,500 to 44,000 gallons. Finally, when the boring had
reached 3,200 feet, at which point it was stopped, the temperature of the water, as it burst from the orifice of the tube, was 165° Fahr., and the volumetric yield $272,000 \mathrm{gal}$ -
lons in the 24 hours. This yield was afterward reduced to 167,200 gallons, in consequence of the bore being lined with wooden tubes, which reduced its diameter. The water obtained disengages carbonic acid in abundance, and also contains nitrogen and a little sulphureted hydrogen, and 80 grains per gallon of fixed matters, chiefly sulphates and carbonates of potash, soda, lime, and magnesia.

ocean Telegraph Cables.

In a recent lecture by Mr. Wm. H. Preece, he says: The deep sea portion of the Cape cable, while it differs to a certain extent from the Atlantic types, is still deficient in that absolute durability which all cables ought to have. In fact there is room forinvention in this direction. Generally, one notices that, where there is a want, some one will spring up with an invention to meet that want. Here is a want that has existed for many years, but no one has invented a cable which can be said to be perfectly adapted for its purposes;
so that, if any one here is of an inventive turn, let me recom. so that, if any one here is of an inventive turn, let me recommend him to try his hand at inventing a cable which will give us all the requirements needed.
This cable to the Cape has one peculiarity in which it differs from any others. Now, among the various accidents to which cables are subject, there is one due to the existence of
life at the bottom of the sea. We know that in differentseas life at the bottom of the sea. We know that indifferent seas there are certain little insects, sometimes 1 eredos, sometimes
Xylophaga, sometimes Limnoria, and others of very hard names, which have a peculiar liking for gutta percha. These little teredos attack us on sea as well as on land, and thetrouble they cause us is sometimes immense. We suffer from them very much on the Irish coast, where the little wretches have found their way to the gutta percha, and have there scored and figured it in a very curious way, samples of which you will see on the table.
To put a check to their boring instinct, the Telegraph Con struction and Maintenance Company, who made the cable which is being laid to the Cape, but which was originally intended for Australia, have surrounded the gutta percha with a wrapping of brass; and if any of these boring insects abound in any portion of the line where this brass wrapping is used, I have no doubt that the brass will be too much for them, and that they will find themselves terribly beaten in making any attempts to get at the gutta percha.
It is found that these little animals do not exist at greater depths than 100 fathoms, and, therefore, in the deep sea po tion of this cable the brass wrapping will not be found.
There are a great many accidents to which submarine cables are subject. One of the principal is that of a ship's anchor, and it was the disturbing element of a ship's ancior that prevented me from having the pieasure of being before you last Monday. On the table is a piece of cable which has been taken out of that crossing the River Humber. The cable which crosses this river is one of the most important that we possess, and for that reason one of the strongest kind of cable ever made was laid down. In the Postal Telegraph Department we have no less than 62 cables, and their aggregate length of 1,224 miles contains a total of 3,809 miles of wire. To cross rapid streams and important rivers strong cables are used, and to cross the Humber, which during spring tides runs at the rate of six to seven knots an hour, a cable of the strongest type was used; yet it had not been down six weeks when a ship got hold of it, and the cable was caught by its anchor. The heavily laden schooner rid ing on a strong tide, with its anchor attached to the cable, brought to bear an enormous force, and, perhaps owing to the construction of the cable, this force would not be equally divided among the outside protecting wires, and thus one
wire, bearing the greater strain, gave way, followed by the snapping of a second, and so on till the whole cable was severed in the straggling and tangled manner that you see, which is very different from its symmetrical form when first laid. This break occurred in a very nasty stream, where the was despairing of being able to give even a second lecture here, when a happy thought occurred to me. I had spent a whole day in grappling after this cable, trying over and over again, and yet never getting near it, when it suddenly came into my mind that Shakespeare makes Bassanio say "In.my school days, when I had lost one shaft, I shot his fellow of the self-same flight, the self-same way, with more advised watch, to find the other forth; and, by adventuring both, I oft found both." So, knowing that a ship had dropped its anchor over the cable, I thought we would drop
our anchor too, and we did, and waited a whole tide, and when we hauled the anchor up there was the cable.
The chief cause of accidents to cables, next to that of anchors, is probably due to abrasion of the cables on rocky bottoms. The bottom of the sea is frequently of an undulatory nature, and the cable remains suspended from point to point, and at such points the wire becomes chafed and worn away, and speedily decays. I am sorry to see that the time at my disposal has gone so rapidly that I cannot particularize to you many of the different causes that lead to the destruction of cables, not only abrasion, not only accidents in paying out, but accidents that exist afterward; forinstance, a whale once caught a cable in the Persian Gulf and broke it; a shark's tooth has been found embedded in a cable, and a sinking ship has caused damage to a cable.
Sometimes the cables rest on corrosive sto
Sometimes the cables rest on corrosivestones, copper ores,
and ironstone, when corrosion sets in and causes the cable
to speedily fail. Volcanic action sometimes damages cables, as also rock slips. In the Bay of Biscay, which is crossed
by the Direct Spanish Company's cable, there is no doubt that such a cause has interfered with the cable on two occa sions, curiously enough, interrupting the wire each time on the same day of the year. There is a peculiar shelving of the rock, and slips exactly equivalent to our landslips take place at intervals.
Icebergs, too, from the North Atlantic, frequently carry large pieces of rock, which fall to the bottom when the iceberg thaws, and in their descent are liable to fall across a cable and damage it.
There are also faults due to imperfect joints, due to accidents that pass inspection during theprocess of manufacture, lapse of time.
Lightning, earth currents, and things of that kind affect cables, but, nevertheless, the eye of che telegraph engineer is constantly watching these circumstances as they happen, and he tries to bring to bear upon them all the power and thought he possesses; and the result is ใhat, by slow experience, the cable of the present day is very superior to that used in the early days, and the improvement has been equal to the advance, which, I hope I have been able to sloow you, has been made as regards the insulators and iron wire.

ENGINEERING INVENTIONS.

Mr. Alexander T. Wilson, of Fairfield, Ill., has patented cheap and simple device for securing and connecting the ends of rails, by the use of which fish plates and nuts and bolts may be dispensed with, and the necessity of punching hoies in the rails be obviated. It consists, essentially, of a doubly slotted block of iron or steel, the top of which con forms to the thread of a raii, and whose bottom is flush with the foot of the rail, and which may be set between the rail, o that their ends may be fixed in the slots and held fast.
Mrx. Felix S. Prendergast, of Savannah, Ga., bas patented an improved gauge for determining the distance apart of the rails of a railroad track. It is so constructed as to give the correct gauge distance, even when the gauge board may not be at right angies with the rails. It consists in a track gauge formed of a gauge board having a segment of a circle attached to it near one end, and a segment of a circle or quivalent knife edge attached to it near the other end.
Mr. Cornelius R. Van Ruyven, of Deventer, Netherlands, has patented a simple and efficient apparatus for regulating and correcing the position of switches, the apparatus being under the control of the engine driver, so that should the switch stand wrong ii can be shifted from the engine. This invention is an mprevement in the class of switches whose operation is contrclied by the engineer or engine driver, the movable rails being shifted or adjusted in position by means f devices on the locomotive.
An improved machine for opening ditches to receive tiles has been patented ky Mr. Guernsey Smith, of Rochester, 11 . It is simple in construction, convenient, reliable, and will remeve the soil and deposit it at the side of the ditch, and leave the ditch in proper condition to receive the tiles.

The Immensity of the Stars.

We take from Le Monde de la Science the following interest ng " Considerations on the Stars," by Professor J. Vinot 'It is known that the stars are true suns, that some of them are larger than our own sun, and that around these enormous enters of heat and light revolve planets on which life cer ainly exists. Our sun is distant from us $38,000,000$ leagues, but these stars are distant at least 500,000 times as far-a distance that in fact is incommensurable and unimaginable for us. Viewed with the unaided eye the stars and the plauets look alike; that is, appear to have the same diameter. But, viewed through the telescope, while the planets are seen to possess clearly appreciable diameters, the stars are still only mere luminous points. The most powerful of existing telescopes, that of Melbourne, which magnifies 8,000 times, gives us an image of one of our planets possessing an apparent diameter of several degrees. Jupiter, for instance, which, seen with the naked eye, appears as a star of the firs magnitude, with a diameter of $45^{\prime \prime}$ at the most, will in this telescope have its diameter multiplied 8,000 times, and will be seen as if it occupied in the heavens an angle of 100°. Meanwhile a star alongside of Jupiter, and which to the eye is as bright as that planet, will still be a simple dimensionless point. Nevertheless that star is thousands of times more oluminous than the planet!

Divide the distance between us and a planet by 8,000 , and you have for result a distance relatively very small; but divide by 8,000 the enormous number of leagues which repre sents the distance of a star, and there still remain a number of leagues too great to permit of the stars being seen by us in a perceptible form. In considering Jupiter, or any of the planets, we are filled with wonder at the thought that this ittle luminous point might hide not only all the visible stars, but a number 5,000 fold greater-for of stars visible to our eyes there are only about 5,000 . All the stars of these many constellations, as the Great Bear, Cassiopeia, Orion, Andro meda, all the stars of the zodiac, even all the stars which are visible only from the earth's southern hemisphere, might be set in one plane, side by side, with no one overlapping another, even without the slightest contact between star and star, and yet they would occupy so small a space that, were it to be multiplied 5,000 fold, that space would be entirely covered by the disk of Jupiter, albeit that disk to us seems covered by the disk of Jupiter,
to be an inappreciable point."

