High and Low Grinding-New Process Flour.
The difference between high and low milling is exactly this. In low milling the reduction of wheat to flour is effected in a single grinding, the aim being to produce as much flour and as little middlings as possible. The speed of the running stone is considerably faster in the old process than it is in the new. If the stones are in proper dress, evenly balanced and adjusted, a large proportion of bran and gluten coats may be obtained without disintegration, but it is very often the case, particularly where a proper adjustment is not had, that a large amount of bran is ground with the flour. This passes through the bolts, and the result is dark flour. High milling is the opposite of low milling, the grain being reduced step by step. Starting with the pointed kernels, we have with each grinding three products. First, we have coarse fragments, with much bran attached; then less coarse fragments, with less bran attached; and finally, minute fragments, with little or no bran attached. These are separated from each other by purifying machines. Each of these products is again subject to grinding, and again sorted into grades, and so on until the last traces of the white interior of the berry have been separated from the dark hull and graded.
Although not by any means a new process, its introduction into this country is so recent that it is new to us, and therefore the term "new process" is not a misnomer. This process has been in use in Austro-Hungary for seventy years and upward, and a similar method was known in France thirty years ago. Even in the State of New York the purification of middlings has been known as far back as 1852. In 1850, John Laumeister, a German miller, built a machine for cleaning middlings or farina at Janesville, N. Y., and put it in successful operation. A perforated sheepskin was used as a sieve, and a current of air forced through the farina as it lay on the sieve carried off all the light stuff. In 1852 the proprietors commenced grinding the farina into flour, and from that time to 1864 it was used and sold as substantially what is now known as "new process flour." It is claimed for the new process that there are sixteen more pounds of flour produced from the quantity of wheat formerly used in producing a barrel, and that the flour is of a vastly superior quality. Another advantage claimed is that it makes a superior flour from spring wheat, which heretofore produced an inferior flour, and by this feature alone has made an important commercial change in different sections of the country as wheat bearng regions. Under the old process of making fiour the winter wheat furnished by all odds the best article. This was obtained only in its best condition from the northern tier of the Southern States, or the extreme southern parts of the Northern States. Virginia, Kentucky, and Missouri furnished tic bulk of the wheat making the best flour, and it commanded a higher price in the market than the flour of the Northwest. Now, by this new process, spring wheat makes a better flour than can be made with the winter, and commands a higher price in the market than the heretofore best kind from winter wheat. This lifts the Northwestern or spring wheat growing States to thre front rank as flour producing States, and adds correspondingly to the value of all the property in them.
It is easy to account for the reason that high milling chooses Minnesota as its favored seat. The wheat in that State was mostly hard, flinty spring wheat, which made an inferior flour. In 1871, a Frenchman by the name of La Croix, a miller, happened to be in Minnesota, and introduced a machine previously known in France by the name of the Perrigault machine, which was a success from the beginning. Thinking there might be a still better machine, one was found in France, known as the "Sasseur Mécanique," invented by a M. Cabancs. As under the old process it was important to get as little middlings as possible, so under the new process the wheat is ground coarser, or, as it is technically called, "higher," in order to get as much middlings as possible. The slower grinding necessitates more stones, while the cleansing process calls for an addition of boltin capacity, which, with the purifier, embraces all the additional machinery required. No additional power is re-
quired, as a diminution in the speed of the stones gives all quired, as a diminution in the speed of the stones gives all
the power necessary for the extra stones. Granulation being the great principle of the new process, we must naturally look to the wheat grain for the facts which render granulation possible. The constituents of the wheat grain are in the form of granules or cells. Inside of the bran are the gluten cells, which contain the most nutritious constituents of the berry, and next beyond the starch granules. The principle in this system of grinding is to separate the granules from the cells with as little flour as possible, and then purify them with a blast of air by blowing away all the fine particles of flour. Under this system the cells are not destroyed, but simply disintegrated, and are supposed to maintain their individual forms the same as when locked up in the berry. This, to the advocate of new process milling, is the Ultima Thule of the art; but the writer cannot understand how a single granule can possess any more virtue in itself than if it was ground up with the gluten in the old way, or when it was an integral atom of the wheat berry.

At the present writing both processes have their advocates. Some claim that new process flour, while looking white and nutritious, must necessarily lack in good breadmaking qualities. Our chemists tell us that immediately within the bran is the most important constituent, as it contains phosphates and nitrogenous ingredients, out of which the digesting and assimilating apparatus elaborate all the important tissues and organs of the body. Now, if all these
are taken away, the bread must be less nutritious, and therefore of a poor quality, no matter how white or inviting it looks. Now, as the "new process" miller does not desire to get the most flour, but the most money, out of the wheat, he does not care to clean the bran; by running close so as to do this would interfere seriously with his object, and would place him under the necessity of grinding instead of granulating, and from this it may be inferred that it is the color rather than the quality of the flour the miller seeks. There is little if anything gained in this or any other process, no matter how white the flour may be, that does not save
pest of the grain for the good of man.-Miller's Journal.

©

Edisons Electrical Generator.

To the Editor of the Scientific American:
I notice in your last issue a communication from a gentleman named Weston denying certain results which I had stated to the writer of the criticised article regarding the efficiency of my dynamo-electric machine. His statements are without sense or science, and plainly originate from one who does not understand the laws which he pretends to set forth. 1 append the report of Mr. Upton, my assistant, who has made all the measurements with the Faradic machine.

Menlo Park, N. J., October 23, 1879.
T. A. Edison.

Mr. Edison: I have read very carefully the communicaion of Mr. Weston, which you handed me to report upon, It is impossible that the statement quoted by him, that your machine delivers nine-tenths of the electrical energy outside is mathematically absurd, when it has been found to be praccally true.
The assertion that a machine working with nine times more external than internal resistance must be "capable of increasing its own electromotive force nine times without an increased expenditure of power" is utter nonsense. Mr. Weston has evidently confounded the obtaining of a maximum of current with the obtaining of a maximum of economical efficiency. A Faradicmachine with a constant field may be considered electrically, when running at a fixed speed, as a battery with a certain E. M. F. and internal resistance. Your machine, for example, has 130 volts electromotive force and about half an ohm internal resistance. According to the reasoning in the letter in question it would be mathematically absurd to connect a battery with a resistance nine imes greater than itself, and "destructive of the doctrine of the conservation and correlation of forces," since doing this with a battery is exactly similar to what you have done with your machine in the case mentioned.
To express the results with equations, the outside work may be taken as equal to $\mathrm{E}^{2}(r+\mathrm{R})^{-2} \mathrm{R}$. This will be a maxi mum when the equation of condition, that the first differential coefficient is equal to zero, is satisfied, or $-2 \mathrm{E}^{2}(r+\mathrm{R})^{-3}$ $\mathrm{R}+\mathrm{E}^{2}(r+\mathrm{R})^{-2}=0$, which is the case when $\mathrm{R}=r$. This shows the maximum is obtained when the external resistance is made equal to the internal. An experimental proof of this was given in a recent number of La Lumière Electrique. For
example, in your machine there should a maximum theoretically when R equals $0.5 \mathrm{ohm}, \mathrm{E}$ equaling 130 volts, or when lif $-130 \times 130 \times 0.5 \times \frac{44 \cdot 3}{33,000}=11$ horse power can be utilized outside of the machine, while as many are lost in the machine. Again if $R=9 r$, as in the case mentioned for illustration in the Scientific American, that is, $\mathrm{R}=4.5 \mathrm{ohms}$, $\frac{130 \times 130}{5 \times 5} \times 45 \times \frac{443}{34}$
$5 \times 5 \times 4.5 \times \frac{43, \overline{33}, \overline{0}}{5}=4$ horse power can be utilized outside of the machine. In the first case, as compared to times as much useful effect may be obtained.
Seeing that Mr. Weston has failed to understand this state ment, though expressed clearly in the article he criticises, his talk about your denying the truth of Ohm's law is highly ridiculous, as well as his boastings about exposing your socalled absurd theory. His placing a few letters and equations in his letter makes more absurd the total lack of power he has to apply them.

Francis R. Upton.

The Ice Cave of Teneriffe.

To the Eaitor of the Scientific American:
Having read in your valuable journal several articles or communications on the subject of "ice caves," and this island having one, which perhaps is the only one of its conditions and circumstances on the globe, I propose to giveyou some account of it. In giving the facts I do not pretend to explain them, but, on the contrary, would be pleased if some of your scientific contributors would give a satisfactory explanation of the phenomena which I will proceed to deribe.
The ice cave is situated on the "Peak of Teneriffe," ove 10,000 feet above the level of the sea, and nearly 2,000 feet from the summit. The point that most calls my attention is, not that it exists there (as it is quite cold there even in summer), but the fact that the mountain is an extinct volcano, and by many supposed to be only slumbering now. Nor is this the only point that merits remark, for there is the added fact that the water in the cave is not congealed on the surface, but on the bottom.
The cave supplies the ice consumed in these islands, from
which it may be inferred that the quantity is not insignificant.
The mouth of the cave is an opening or well hole, in what seems to be an immense pile of bowlders; the mouth is irregular in shape, and about two yards square. The entrance is made by being lowered perpendicularly some 15 feet to terra firma, where one finds himself on a small plat of earth and stone, say five yards square, and almost surrounded by.what seems a small pond of clear water. After the eyes are a little accustomed to the dim light the visitor can see the walls of the cave, which are of earth and stone. The cave is about of the cave, which are of earth and stone. The cave is about
100 feet long by 30 feet wide, with roof 10 to 15 feet in height.
The water is from 1 to 2 feet deep over the ice, which has to be dug out with pickaxes. The ice is not like that in our American waters, being granulated and coming outin irregular shaped lumps, from the size of an egg to that of a man's head. When extracted it is found more or less dirty from the earth and pebbles mixed with it. It serves, however for medicinal purposes, and for making ice creams, etc. In several places the water drops slowly from the roof, but the chief supply seems to trickle through small crevices in the walls.
Some distance higher up the mountain, and some 400 yards away from the cave, there are seen a number of jets of what seems smoke or steam issuing from small crevices in the rocks, and on applying the band the heat is found to be inupportable for even a moment
I give these facts from a personal experience, and can vouch for their veracity. They appear to me to be of such a peculiar nature when considered together that they should merit the attention of scientific minds.
H. B. M.

Santa Cruz de Teneriffe, Canary Islands, October, 1879.

A Puzzle for Future Geologists.

A singular discovery was made during last year's dredging operations of the Coast Survey Steamer Blake, in the Caribbean Sea; a discovery which should furnish a lesson of caution to geological observers and theorizers.
While dredging to the leeward of the Caribbean Islands large accumulations of vegetable matter and of land débris were brought up from deep water, many miles from shore. It was not an uncommon thing to find, at a depth of over 1,000 fathoms, and some 10 or 15 miles from land, masses of leaves, pieces of bamboo and of sugar cane, dead land shells, and other land débris, which were undonbtedly all blown out to sea by the prevailing easterly trade winds, and frequently masses of vegetation, more or less waterlogged and ready to sink, were found floating on the surface of the sea. The contents of some of the trawls would, indeed, have sorely puzzled a palæontologist if he had met them in a fossil state; amid deep water forms of fishes, crabs, echinoderms, sponges, etc., would be found orange and mango leaves mingled with branches of bamboo and nutmegs, so that it would have been difficult to decide whether the marine or the land fauna predominated. Such a find in a fossil deposit would probably be explained as having occossil deposit would probably be explained as having oc-
curred shallow estuary surrounded by forests. It is not without interest to observe that this large amount of vegetable matter thus carried out to sea seems to have increased in certain localities the number of marine forms of life.

Carpeting the Mississippi at New Orleans.

In a recent issue the New Orleans Times states that nearly all the first appropriation for laying cane mats along the river front, in the second and third districts of Orleans Parish, has been expended in the work.
Another appropriation of $\$ 60,000$ was made in April last, and the department had advertised for bids upon the work, returnable on the 20th of October. The laying of the mats is done in a more satisfactory manner than ever before, as the men have greatly improved in skill by experience. The regular rate of speed now is two mats per diem, each mat having a length of two hundred feet and a breadth of twentyix feet.
The mats are laid so as to lap over upon one another about six feet on each side, and are weighted down to the bottom of the river by long canvas bags filled with sand. In September the workmen were engaged below Elysian Fields street. The work in the upper district will be begun when the lower work is finished. The latter is by far the most the lower work is finished. The latter is by far the most
important, and, owing to the presence of projecting wharves important, and, owing to the presence of projecti
and of shipping, most costly and most difficult.

Completion of Cologne Cathedral.

The first stone of the Cologne Cathedral was laid August 5,1248 , and it is thought it will be completed in another ear. The two towers have now reached their last stage, and have only to be fitted with their massive caps of solid stone work. For this purpose two great scaffoldings have to be erected at a dizzy height; one of them, however, already approaches completion. When the caps have been finished then a still higher story will have to be added to the scaffolding, in order to fix on the tops of the caps the gigantic foliated crosses, almost thirty feet high, which are to crown the towers. This operation will, it is expected, be performed next spring.

According to Gerard von Schmitt, physician and traveler, the plant Mikania guaco possesses medicinal properties very
efficacious in the treatment of cancer and allied diseases.

