Surutifir Amprian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.
PUBLISEED WEEELY at
NO. B'Y PARK ROW, NEW YORK.
o. D. MUNN
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included..
One copy, six months, postage included
Clubs.-One extra copy of THE Scientific American will be supplied
gratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.
Remit by postal order. Address
MUNN \& CO., 37 Park Row, New York.
To Advertisers.-The regular circulation of the Scientifio Americas is now Fifty Thonsand Copies weekly. For 1880 the publiers anticipate a still larger circulation.

The Scientific American Supplement

is a distinct paper from the ScIentific American. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, with is issued weekly. Every number contains 16 octavo pages, with handsome cover.uniform in size with Scientific American. Terms of subscription
for SUPPLEMENT, 85.00 a year, postage paid, to subscribers. Single conie for conts. Sold by all news dealers throughout the country.
Combined Rates. - The SIEvTrict American and SUPPLement ill be sent for one year, postage trific Amerian and andars. Bot papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal
Address MUNN \& CO ., 37 Park Row, N. Y.

Scientific American Export Edition.

NEW YORK, SATURDAY, NOVEMBER 15, 1879.

TABLE OF CONTENTS OF the scientific american supplement NO. 202,

For the Week ending November 15, 1879.
Price 10 cents. For sale by all newsdealers
I. ENGINEERING AND MECHA NICS.-The New Cunard Steamer Gallia.

Iour Mils-Cost and Depreciation. By A. J. Waters.
IL ELECTRICITY, SOUND, ETC.-The Lontin $\begin{gathered}\text { Electric Light. The } \\ \text { character and economy of the Lontin system. } \\ \text { Theory of the Telephore. }\end{gathered}$ Practical tests.
In. TECHNOLOG Y AND CHEMISTRY.-The Polariscope as Applied to等
10. MEDICINE, HYGIENE, ETC.-Anesthesia Mnder Pressure. Superior Chonder siight pressure SiMMoss, of Yokoham a

VII. INDUSTRIAI, ART. - Suggestive Ornaments for Decorative Paint-
ing. Thirteen fgures of ornaments designed by 0 . Girard, Architect in
Vienna, with directions for coloring

IX. MISCELLANEOUS.-Literature and Composition. By Eliza A.

five thousand dollars reward for the

 INVENTION OF A STOCK CAR.At its recent meeting at Chicago, noticed at length in another column, the American Humane Association offered a prize of $\$ 5,000$ for an improved stock car capable of carrying live animals long distances without needless suffering. The great object seems to be to obtain a carin which cattle, sheep, or hogs can be fed and watered while on the road, with room for the animals to lie down without risk of
being trampled upon by others. It appears from the investigations made by the agents of the association that the practice of frequent stoppages to allow transported stock to lie over for rest and regarded, and when observed only add to the sufferings of the animals. The stockyards are rarely furnished with suitable appliances for feeding or watering stock; too often the animals are crowded into filthy and muddy pens in which they cannot lie down either with comfort or safety; and the terror of the tortured animals when reloading is attempted leads them to resistance, wild rushes and frantic efforts to brutally punished by the yard men. To obviate all this suffering, not to speak of the losses en tailed by the killing and maiming of animals in the pens
The resolution in
The resolution in which the prize is offered was introduced by the secretary of the association, Mr. Abraham Firth, of Boston, Mass., and reads as follows:
"Whereus, An urgent need exists of an improved cattle car in which animals can lie down and rest, and in which they can be watered and fed while on their journey, to the markets, and be saved the suffering attendant upon loading and unloading from the cars, and at a serious loss of time to all having a pecuniary interest in the business; and
"Whereas, Objections are urged by the railroad companies against existing cars made to attain the ends named; and
stimulereas, We strongly believe that invention may be Uated in this direction; be it
Voted, That this association, recognizing its great importance, would urge all persons interested in its work to pledge themselves to pay a definite sum towards a prize for this object.
"Voted, That in the judgment of this meeting the prize ought not to be less than $\$ 5,000$, and that six months' time should be given to all competitors to prepare specifications and models, and meet whatever requirements the judges of the prize shall name in their offer.
"Voted, That the Executive Committee of this association be requested to solicit pledges in this behalf from all persons interested in this specific aim, and be authorized to appoint
the judges and to determine all the conditions, excepting the judges and to determine all the conditions, excepting
only two: First, that the invention shall be the unembarrassed property of this association; and secondly, that the car so approved be offered without charge to all railway companies who will use it in all their live stock business."
A little consideration of the practical bearing of the clos ing stipulations will probably lead the association to rescind them. The object of the association being purely one of humanity, their interest lies in securing the speediest possible.introduction of the reform they seek; and experience proves that an improvement which some one owns and is
pecuniarily interested in securing its wide and immediate use, is farmore likely to be speedily and generally adopted than one which is common property. In any case, whether the inventor chooses to surrender his patent or not, the sub . ject is worthy of attention. A car which will satisfy the requirements of the association will meet the wants of a vast and rapidly growing traffic; and the superior condition in which it will deliver cattle after long journeys, to say nothing of the direct saving in the percentage of loss of life and in doing away with the loss of time incident to stoppages, will compel its adoption by cattle shippers whether they care for the humanity of the thing or not. It is needless to say that the patent on a car of such a character would be an exceedingly valuable property.
We have no figures
We have no figures at hand to show the exact amount of the live stock traffic of our great railways, but it is obviously enormous. The cattle, hogs, and sheep required to supply the markets of our great cities are to be numbered only by millions annually. Even the traffic involved in our export trade in animals is extremely large. At our great pork-packing centers in the West there were slaughtered last year about seven and a half million hogs, the larger portion of which had made more or less extended journeys by rail. The packing-houses of the seaboard States must have added
many hundred thousand to these figures. Nearly two hundred thousand sheep were exported alive last year, and probably half as many horned cattle; this in addition to more than fifty million pounds of slaughtered beef, brought alive from the far West. And, it will be remembered, this carrying traffic in live stock is but in its infancy.
As an indication of what has been done toward meeting the demand which the Humane Association has brought so prominently before the public, the following description of a patented car examined by a committee of the association will prove of interest. The absence of facilities for feeding and watering the animals in transit, necessitating the frequent repetition of the objectionable and injurious process of unloading and reloading, would seem to be a fatal defect in its otherwise clever construction:
of movable bars, so arranged that they may be moved upand down at pleasure through slatted standards. After the car is loaded and the doors closed, the bars are let down from the outside between the animals, partitioning them off sepa rately or in pairs, as may be desired. The bars are raised from between the animals to the roof before unloading, when they are driven out in the ordinary way, and the car is left in condition for returning freight.
The car will accommodate sixteen steers, giving each animal a separate stall. Hogs may be partitioned off in like manner, with from fifteen to eighteen in each pen, thus pre venting them from piling upon each other and smothering. There is a tank underneath the car, with a capacity of ten barrels of water. This is connected with a pump on the roof of the car, by means of which the water is force through a perforated tube, which extends through the entire length of the car, completely filling it with a fine spray, which, when continued for a few minutes, amounts to a shower bath. This is designed to allay thirst and internal heat by being inhaled, and to allay heat-fever and disease by keeping the pores of the skin open.
It is claimed by the inventor to be more consistent with the laws of health to keep the body thus refreshed than to allow it to take large draughts of water through the stomach while in transit, which of ten results in stiffening and foundering the animal.
It is claimed further that feed and water troughs may be attached to the car if found to be desirable at the conclusion of the experiments which are now being made. But the in ventor is of the opinion that to deprive the animal from being taken from the cars and afforded a reasonable time for rest, at least as often as it is necessary to partake of food and water, is inhuman, and a violation of well settled physiologi cal principles: an opinion which would have more weight were it possible to unload and reload the cars without hurt ng the animals more than a steady and unbroken journey would.

ANTI-VACCINATION FOLLY.

The coming of an English gentleman, with a craze against vaccination as a preventive of smallpox, has been made the occasion of an attempt to stir up opposition to the practices of our American physicians and boards of health in this con nection. By parading a portentous array of figuresto show that vaccination does not prevent smallpox and does entai a vast amount of disease through blood contamination, not a little feeling is aroused, especially among the ignorant; the anti-vaccination spirit prevailing in English and other European circles, embracing no inconsiderable body of the more intelligent classes, being urged as a reasonable ground r similar opposition here.
Those who have echoed the anti-vaccination cry, however, do not appear to be familiar with the circumstance that, ow ing to radically different methods of obtaining and using the vaccine virus here and in Europe, no argument based on European results can have any application here. The adverse statistics derived from European experience, or from American experience previous to the adoption by our phy sicians of correct methods and uncontaminated virus, may all be strictly true, and doubtless are substantially true; yet our confidence in proper vaccination need not be shaken in the least. Accordingly our European friends, instead of trying to propagate their notions here, would do much better to study the methods employed in this country and try them at home. Vaccine virus, not contaminated and stripped of its virtue by over-humanization-that is, by repeated transmission from man to man-is both free from risks and of certain efficacy. No better proof of this fact is required than the practical stamping out of smallpox in this great city. In view of the fact that by the general adoption of correct vaccination, smallpox, but lately one of the worst of human scourges, has been so thoroughly brought under subjection in this great city, that with $1,100,000$ inhabitants there were last year but fourteen cases of the disease, it is manifestly as unwise as it is absurd for our news papers to lend themselves to the propagation of anti-vaccina ion nonsense.

THE FUTURE WATER SUPPLY OF PHILADELPHIA.

Philadelphia is now supplied with water chiefly from the Schuylkill River, a part coming from the Delaware. The water is pumped to the levels required by steam pumps with igh lifts. There are seven pumping stations: the Fairmount on the Schuylkill, the Schuylkill, the Spring Garden the Delaware, the Belmont, the Koxborough, and the Frankford, with an aggregate capacity of about fifteen thousand million gallons a year.
The rapid growth of the city has resulted in the serious contamination of most of the sources of the city's water sup ply, making a resort to streams draining regions less thickly populated an urgent necessity. The latest project, that of Mr. James F. Smith, C.E., contemplates a gravity supply by aqueduct, to be drawn from the upper portion of the Perkio men Creek and its tributaries. A short distance above the Green Lane station of the Perkiomen Railway, in Montgomery County, there is, Mr. Smith says in the Journal of the Franklin Institute, an admirable site for a dam, at a point where the stream cuts through a ridge of hard rock, making a gap of about 300 feet across, with precipitous sides. At this place the dam may be 90 to 100 feet high, backing the water several miles into a valley, with favorable slopes bounded by hills and ridges. From this point the proposed
aqueduct runs southeasterly in a straight line about 271
miles, to a receiving basin in Germantown, the surface of which might be 240 feet above the city datum, and the water surface nearly 249 feet above the city datum, or 254 feet above mean tide in the Delaware. In the first $101 / \frac{1}{2}$ miles of its course the proposed aqueduct crosses a number of important tributaries to the Perkiomen, which rise in the hills di viding the waters of the Delaware from those of the Schuyl kill in Montgomery and Bucks counties, more than 500 feet above tide. It is a part of the plan to make these streams tributary to the water supply by the erection of impounding dams upon them
The area of the watershed of the Perkiomen above Green Lane, and the tributaries crossed by the aqueduct, is not less than 200 square miles, with a rainfall capable of affording about a hundred thousand million gallons a year.
The advantages of the proposed plan include the following. It will supply from a single point more water than is required for the present population of the city, and will deliver the water to a basin 27 feet above the highest reservoir in the city (Belmont), and from 104 to 145 feet above the other existing basins. . It can supply Roxborough and Mount Airy basins by a pumping station at the aqueduct, near the former basin, and save more than 200 feet in the lift encountered at the present Roxborough pumping works. It will obviate the necessity for all the present steam pumping stations, with their expensive and often troublesome monster pumps, and leave Fairmount and its water power, when disconnected from the basins, to be run moderately in the summer to feed lakes and fountains in the park or in flushing main sewers.
The estimated cost of the work is less than that of the Croton Aqueduct; and as the full capacity of the aqueduct will not be required for many years, a large part of the work can be

EDISON'S ELECTRICAL GENERATOR.

Electric machines convert mechanical into electrical ener gy. The obtaining of electricity may be considered a manufacturing process, wherein steam power is the raw material and electricity the product. The best machine, other things being equal, will give the greatest yield of finished product from a given expenditure or consumption of raw material. The ratio of yield to consumption is the expression of the efficiency of the machine.
How many foot pounds of electricity can be got out of 100 foot pounds of mechanical energy? Certainly not morethan 100; certainly less. What are the sources of loss, and what become of the lost foot pounds? Friction and resistance of the air inexorably demand their share in all kinds of machines. In the electric machine a heavy armature, sometimes spread out like a fanning mill, must be revolved at the rate of 500 to 1,000 times in a minute. Also there are great leakages incidental and peculiar to the electric machine, which may be summed up in the expression local actions, which consist in currents induced outside of the normal circuit, changes in the magnetism of the magnet cores, etc. How many foot pounds do we lose or are we obliged to lose out of the 100 expended? How many foot pounds of electricity are left after deducting the losses? The facts and laws of physics, with the assistance of mathematical logic, never fail to furnish precious answers to such questions. People generally, however, are not familiar with the methods and language of exact science, and prefer results of direct, plain, actual, and practical experiments, results unmixed with any abstraction. We appeal now to the testimony of such experiments.
In 1877 a committee of the Franklin Institute, consisting of ten competent and eminent experts, with a view of determining the capabilities of electrical generators, made a series of trials with the best machines then procurable. Their elaborate report describing the details of experiments was published in the May and June numbers of the Institute Journal of 1878. This report has become a recognized authority, and remains, so far as I know, in all respects unimpeached; and I shall use it now with fullest confidence in the accuracy of its statements. The committee experimented with 6 machines: 3 Brush, 2 Wallace, 1 Gramme. To suit my present purpose I have reduced statements of the report to the simple symmetrical form of the table below. This table shows the losses and produce of 100 foot pounds of power delivered upon each machine; the figures may be read as representing foot pounds or per cents.

I present this table as worthy of thoughtful attention; it should interest all electricians. The facts which a little study will disclose may prove somewhat appalling to those whose imaginations have been busy with bringing Niagara powe
nies.

nies.
 The facts shown in columns 5 and 6 are worthy of special

 attention. The total produce of electricity is shown in 5 , andin 6 the practical value of that electricity; the figures in 6
are only about one-half the corresponding figures of 5 . Why is it that when we have produced the electricity half of it must slip away? Some persons will be content if they are told simply that it is a way which electricity has of behaving. But there is a satisfactory, rationa. explanation, which, I believe, can be made plain to persons of ordinary intelligence. It ought to be known to all those who are making or using machines. I am grieved to observe that many persons who talk and write gliblyabout electricity do not understand it; some even ignore or deny the fact to be explained. I will try to set forth the case plainly.
Electricity
Electricity moves in a circuit, and in moving disappears; that is, it is converted into some other form of energy. The
same electricity does not move round and round again; it never repasses the starting point; it does not exist to repass the starting point. As it moves it falls and dies in its tracks, and its dead body at once and on the spot is resurrected, but in a changed form. Now a part of the circuit is always and of necessity inside of the machine or battery; it is the wire of the armature or the liquids and the metals of the battery This part of the circuit also is inaccessible, and the electricity which is here transformed is unavailable; this electricity, in fact, is worse than useless, for the heat into which it is transformed is one of the seriouspractical difficulties of the machine. It is then only the electricity which appea in the circuit outside of the machine which is utilizable.
At this point plausibly comes in a suggestion that the internal part of the circuit be made very small and the external part very large. Why not (say) make the internal part 1 and the external 9, thus saving $\frac{9}{10}$ and losing only $\frac{1}{70}$? Unfortunately the suggestion is not practical; a fallacy is concealed in it.
The electricity is truly converted throughout the entire circuit, but not evenly in proportion to the length of the circuit. The conversion takes place precisely and exactly in accord with the resistance in the circuit to the flow of the electricity. The electricity may be considered as distributed over the whole circuit pari passu with the resistance, and
thereupon is transformed into energy of another name, disthereupon is transformed into energy of another name, distributed as to the quantity precisely as was the electricity. This explanation does not disclose the weakness of the suggestion, but it will assist us in finding it.
Beasts of burden and other rational creatures redouble their arforts when their burdens are increased, and "thrice is he
armed," etc. Electricity behaves very armed," etc. Electricity behaves very differently; there are
no moral suasions or reserved forces behind it. Increase its burden, and it weakens right down; it is more stubborn than a mule; it won't budge at all, except after its narrow plan. The law of the electric current is that it exists or is produce the resist he resistance to its flow in the circuit; double and the current is one-thirent is halved; treble the resistance and the current is one.third, etc. In any machine let the
armature revolve steadily, and the current produced will depend solely upon the resistance; with the least resistance you get the maximum current, with the greatest resistance you have the minimum current. Now, also, the internal resistance of any machine is constant or unalterable. In order to get any external effect, external resistance must be added o the internal. To get the greatest yield from a machine or battery, it must be short circuited; that is, the external resist ance must be suppressed; but then you find yourself in the
interesting predicament that all the electricity is securely bottled up in the armature and is of no good to you. On the other hand, arrange things so that the greatest part of the resistance is external, and the electricity has shriveled up to a quantity which is utterly useless to any allopath. There is evidently a just mean; what is it? What is the best practical ratio of the external and internal resistance? The mathematical calculations which clearly and beautifully answer this question, and which take in the principle that the sum of variables is least when they are equal, are probably beyond the experience of the average reader, and I substitute a sort of cut and try method.
Let the current of the short circuited machine be (say) 100 . Now add an external resistance ($\mathrm{R}^{\prime \prime}$) equal to the internal (r), thereby making a doubled total resistance (R). $\quad\left(r+\mathrm{R}^{\prime}\right.$ $=\mathrm{R}$). The total current has become 50 , and the external or utilizable part of it is 25 . Treble the R , making $r=1$ and $\mathrm{R}^{\prime}=2$, and the total current becomes $33 \frac{1}{3}$ and the utilizable part $22 \cdot 2$. For another trial, make external half as great as internal $r=1$, and $\mathrm{R}^{\prime}=\frac{1}{3}$, and total current becomes $66 \cdot 6$, of which $22 \cdot 2$ is utilizable. Now we are getting indications of the fact that the greatest external current is produced in a given time when the external and internal resistances are continue the cut and try plan till he shall be.
But, exclaims the bright scholar who is always on the qui vive for flaws, it is a question of economy, and it may be best to take a little more than the given time, and so get a
greater portion than the half for our use; time is cheaper than coal; or, if we must have a certain great quantity of electricity in a short time, we may build a very big machine or use a good many little opes; why not save nine-tenths of the total current? The remarks of the bright scholar are trouble with him is that although his vision is very clear it is not so wide; he is quick to spy out a thing, but he does
not observe its environments. Why not nine-tenths? It is hard thing to do after perusing the table of results above given; but consider or imagine that the losses of a machine by friction and local action are reduced to one-tenth, so tha 100 foot pounds of steam power produce 90 foot pounds of
nternal) shall have 45. Now adjust external resistance so that you shall get $\frac{9}{16}$ outside and $\frac{1}{10}$ inside, and weigh and figure up the results. Instead of getting 9 for 10 invested, you have 162 avails of 28 invested, or at the rate of 5.8 from 10 invested. There is a clear gain by attending to the spigot, but the steady leakage at the bung was still going on. do not mean to say that the equalizing r and R^{\prime} should be an inflexible practical rule, but simply that the advantages f varying from it are not so great as some persons suppose; also the loss from local action is not constant for varying products of electricity; the illustration ought not to mislead any one, and the precise data for determining the peculiar ratio of r to R^{\prime} for the most economical working are plainly nough indicated.
Now, on looking over the above I feel as if I had led the reader over a wearisome roundabout road, when there is a short cut across lots to the destination. My excuse is that the short cut is not a familiar thoroughfare, and the average traveler cannot feel confidence in it. Mathematics is what I have in mind. To the mathematician the expression $a^{2}+b^{2}=$ e^{2} is the clear expression of the relation of the sides of right angled triangles and many other things, but we plain people whittle up a great many shingles or pencils in the cut and ry plan before we can apprehend the thing it teaches.
But there is one little expression, simple in form, yet full of meaning, in fact a mine of the elements of ideas on electricity, which I would, if I had my way about it, compel the reader to wrestle with till he had completely mastered it. It is the expression of the principal facts about the electric circuit; it is called Ohm's law, and it is this: $\mathrm{C}={ }_{\mathrm{K}}^{\mathrm{E}}$. C is the strength of the current, that is, the quantity (say ft. lb.) Howing per second. E is electromotive force, an idea corresponding to tension, pressure, or head. R is resistance to the flow. (It will assist the tyro to observe that electricity has some of the properties of ordinary fluids, and that Ohm 's law is true for water and steam. Let, for example, C be galls. of water per minute, E head of water, R resistance to flow, narrowness of pipes, friction, etc. The formula, however, is not useful outside of electricity, mainly for the reason of the difficulty of specifying and keeping constant the elements which constitute R.) The formula declares that C varies directly with E , and in versely with R. In any machine E varies with velocity; when the velocity is uniform E is constant, whatever be the ratio of external and internal resistance, or whatever be the produce of the machine in usable current. If it is desired to distinguish the internal (r) from the external (R^{\prime}) resistance, $\boldsymbol{r}+\mathrm{R}^{\prime}$ may be substituted for R , when $\mathrm{C}=\frac{\mathrm{E}}{r+\mathrm{R}^{\prime}}$. In any machine r is always constant, and E is constant for constant velocity; in this last case C can vary only with R^{\prime}. C represents only the total C of the normal circuit; the use-
ful C, or that which can appear as light, heat, chemical or mechanical energy outside of the machine,$=\frac{\mathrm{C}\left(r+\mathrm{R}^{\prime}\right)}{\mathrm{B}}$. etc.,

But about Edison's electric generator! The articles about it on pages 242 and 272 are the texts on which I have discoursed, and although I have not named the generator, it has all the time been in mind. Those who are accustomed to read be tween the lines, have some of my thoughts which are oot yet put on paper. But lest any one should suppose that I amunfriendly to Mr. Edison and his work, I hasten to say that I am fully in accord and sympathy with the writer of page 242 , when he asserts and laments that the newspaper reports of the sayings and doings of Mr. Edison were exaggerated and inaccurate, and consequently damaging to him. No one capable of making the improvements in the telegraph and telephone, for which we are indebted to Mr. Edison, could be other than an accomplished electrician. His reputation as a scientist, indeed, is smirched by the newspaper exaggerations, and no doubt he will be more careful in future. But there is a danger nearer home, indeed among his own friends, and in his very household. The lamentable case of Deacon Richard Smith and his wicked partners should serve as a warning. It is said that the Deacon was wise and good until his wicked partners got control of him, when he behaved foolishly and uttered blank nonsense. The writer of page 242 is probably a friend of Mr. Edison, but possibly, alas! a wicked partner. Why does he say such things as these: "Mr.Edison claims that he realizes 90 per cent of the power applied to this machine in external work;" " The economy of this machine is shown by the fact that one man may turn it with sufficient rapidity to maintain the electric arc of a Jablochkoff candle, etc. Perhaps the writer is a humorist, and had in his mind Col. Sellers, Indian trader foot pounds, etc., which he could not Mr. Edison has builta very interesting jests are not good. Mr. Edison has builta very interesting machine, and he has he oppgrtunity of making a valuable contribution to the lectrical arts by furnishing authentic accounts of its capailities.
New York, October 30, 1879.
Every person who has money to invest always desires to place it where it will produce the best returns. This inconrovertible fact being admitted, we undertake to say that $\$ 3.20$ invested in one year's subscription to this paper will bring a larger return to the manufacturer, machinist, inventor, farmer, or lover of physical science, than the same mount invested in any other way. A year's numbers makes a volume of over 800 pages, costing only $\$ 3.20$.

