later, same year, 10,000 houses destroyed; 1751, 4,000 houses; $1756,15,000$ houses and 100 persons; years 1761,1765 , and 1767, other great fires; 1769, 1771, and 1778, great fires; 1782, fire burned three days, $10,000,000$ houses and one hundred lives lost; February, same year, 600 houses; June, 7,000; 1784, 10,000 houses; 1791, between March and July, 32,000 houses burned, same number in 1795; 1799, in suburb of Para, 13,000 dwellings and many magnificent buildings destroyed 1861, August 16, 12,000 houses and 3,000 shops in finest quarter were destroyed; 1818, August 13, fire destroyed several thousand houses; 1823, 6,000 houses; 1848, 500 houses, 2,000 shops, loss estimated $\$ 15,000,000 ; 1865$, great fire destroyed 2,800 houses and public buildings, 22,000 persons left homeless; 1870, June 5, the suburb of Para, occupied by the foreign population and native Christians, swept by a fire which destroyed over 7,000 buildings, many of them among the best in the city, including the residence of the foreign legations; loss estimated at nearly $\$ 25,000,000$. Scutari, Greece, 1797 , 3,000 houses burned. Smyrna, Greece, 1763, 2,600 houses consumed, loss $\$ 1,000,000 ; 1772,6,000$ houses; 1796, 4,000 shops; 1841, 12,000 houses. Yeddo, Japan, 1872 6 square miles burned over, 20,000 persons home less; 1873, 10,000 houses destroyed.
At Boston, Mass., 1679, all the warehouses, 80 dwellings, and vessels in the dockyards, were con sumed, loss $\$ 1,000,000 ; 1760$, fire caused loss of $\$ 500,000 ; 1787,100$ buildings destroyed; 1794, 96 buildings burned; 1872, great fire November 9 and 10, the richest part of city destroyed, an area of 65 acres burned over, 776 granite and brick building consumed, loss $\$ 75,000,000$. Charleston, S. C., 1778 fire caused the loss of $\$ 500,000 ; 1796,300$ hous burned; 1838 , one half of city burned, loss $\$ 3,000,000$ Savannah, Ga., 463 buildings, loss $\$ 4,000,000$. Ne York, 1835, 530 buildings in business center of city destroyed, 52 acres burned over, loss $\$ 15,000,000$ 1845, 300 business blocks, 35 persons killed, loss $\$ 7,500,000$. Pittsburg, 1845, 300 buildings destroyed loss $\$ 10,000,000$. Albany, 1848, 600 houses burned loss $\$ 3,000,000$. St. Louis, May 17, 1849, 15 blocks, 23 steamboats, loss $\$ 3,000,000$; May 4, 1851, thre quarters of the city burned, 2,500 buildings, los $\$ 11,000,000$; same year, 600 houses, loss $\$ 3,000,000$ Philadelplia, 1850, July 9,400 buildings burned, 30 lives lost, loss $\$ 7,000,000 ; 1865,50$ buildings burned 20 persons killed, loss $\$ 500,000$. Washington, 1851 part of Capitol and whole of Congressional librar burned. San Francisco, May 4 and 5, 1851, 2,500 buildings and a number of persons burned, more than three fourths of city destroyed, loss $\$ 10,000,000$ June, same year, 500 buildings, loss estimated a $\$ 3,000,000$. Chicago, 1857, 14 lives, $\$ 500,000 ; 1859$ September 15, $\$ 500,000 ; 1866$, August 10 and Sep tember $18, \$ 500,000$ each; 1871, the greatest fire of modorn times, October 8 to $10,2,124$ acres, or 3 square miles, burned over in the very heart of the city, 250 lives lost, 98,500 persons made homeless and 17,430 buildings, one third in number and one half in value of buildings in city consumed, los estimated at $\$ 190,000,000$. Troy, N Y., 1862, nearl destroyed by fire. Portland, Me., 1866, great fire July 4 , one half of the city burned, 50 buildings blown up to stop the progress of the fire, loss $\$ 11,000,000$ Quebec, $1815-16, \$ 1,000,000 ; 1845$, May $28,1,65$ houses burned, one third population made homeless, loss $\$ 3,000,000$; another fire June $28,1,300$ dwell ngs, 6,000 persons made homeless, loss $\$ 1,000,000$ 1866, 2,500 houses and 17 churches in French qua ter burned. St. John, N. B., 1837, January 13, 11 houses and nearly all the business part of the city burned, loss $\$ 5,000,000$; 1877, June 21, 200 acre burned over, 1,650 dwellings, 18 lives lost, tota pecuniary loss $\$ 12,500,000$. St. Johins, Newfound land, 1846, loss . $\$ 5,000,000$. Montreal, 1850, June 7, 200 houses in finest part of city burned; 1852, July 9, 1,200 houses burned, 10,000 persons destitute, loss $\$ 5,000$, 000. Santiago, South America, fire in the Jesuit church, 2,000 persons perished.

Improved Electric Candie.

An improved form of electric candle has been produced by Mr. S. Cohné, of London, for which the following advantages are claimed: Up to the present time all electric candles in use have been made from pure carbon or carbon mixed with other substances, such, for example, as kaolin or plaster of Paris, all which have the great disadvantage of burning too quickly away, and producing in a greater or less degree a firckering light. Such candles, therefore, require controlling mechanism to regulate their distance from each other. Mr. Cohné's invention consists in making or forming a candle of ultramarine, or the substances which when united together form or produce ultramarine. The ultranarine may be green, blue, or of any other color in which it is produced. It may be either used in its pure state or mixed with carbon, k aolin, plaster of Paris, molasses, or with any metal reduced to powder so as to be in a finely divided state. The metal preferred is copper, and it is ultramarine, carbon,, powdered copper, and molasses that the patentee employs. To about four parts of carbon he adds one part of ultramarine and one part of the finely divided metal, and as much molasses as will, when mixed with the other materials, be sufficient 10 form the whole into a paste which can be moulded or otherwise formed into the shape desired.

The candle thus formed is dried and heated for a sufficien ime by fire, by whose action all the moisture is evaporated, the sulphur is burned away, and the molasses, as well as al other organic matter, becomes carbonized. The patentee does not confine himself to thè exact proportions above named, and it will be understood that the mixture alluded to is only one of those in which the candle may be made. When these candles are put into use, the resistance and the current in the arc are to a very great extent less varying and controlling mechanism to regulate the distance is nearly unnecessary, because the candle is consumed very slowly in comparison to those heretofore in use

BAPTISMAL FONT.

The marble baptismal font shown in theengraving is from the establishment of Messrs. Struthers \& Sons, Philadelphia In simplicity and grace, in purity of sentiment and harmonious blending of ornament, it is comparable with anything e have seen.
From a plain octagonal base rises a slender, round shaft

MARBLE BAPTISMAL FONT.

which rests a circular basin, with receding mouldings lessening toward the rim. Around the foot of the shaft are strewn numbers of pond lilies, their round, flat leaves disposed on a horizontal plane, while here and there among the group are sprays of delicate lilies of the valley, the blossoms half hidden in their sheltering sheath-like leaf. Risingabove these, almost to the rim of the basin, is a sheaf of beautiful white water lilies, their long, smooth stems bound to the shaft of the column by a ribbon band, their broad leaves and graceful flowers encircling and completely hiding the lower portion of the basin.

The Influence of Temper on Health
Our English contemporary, Capital and Labor, which is generally correct in its assertions, thinks that, while excessive labor, exposure to wet and cold, deprivation of sufficient quantities of necessary and wholesome food, habitual bad lodging, sloth, and intemperance, are all deadly enemies to human life, none of them are so bad as violent and ungoverned passions. Men and women have survived all the former, says the writer, and at last reached an extreme old age; but it may be safely doubted whether a single instance can be found of a man of violent and irascible temper, habitually subject to storms of ungovernable passion, who has arrived at a very advanced period of life. It is, therefore, a matter of the highest importance to every one desirous of preserving " a sound mind in a sound body," to have a special care, amid all the vicissitudes and tri
life, to maintain a quiet possession of his own spirit.

Exceptionally satisfactory results have been obtained a the proof butts in the government marshes, adjoining the Royal Arsenal, Woolwich, with one of the 80 ton guns con structed for H. M. S. Infiexible. The gun has just been increased from $151 / 2$ inches to 16 inches, and has had its cham ber enlarged for the effectual and deliberate consumption of the comparatively slow gunpowder, which experience has proved to be of the greatest service in enormous charges, a he same time that the powder was carefully compounded and particular attention paid to the air spacing of the car tridge. At the first round, which was simply a warmer with 428 lb . of powder, the velocity of the projectile wa 1,603 feet per second, the projectiles weighing rather above $1,709 \mathrm{lb}$. The full charge of 445 lb . of powder was then fired, and the electric recording instrument marked a velo city at muzzle of 1,657 feet per second, or a fraction of 9 feet in excess of the German gun's velocity under almost pre cisely similar conditions. The officials engaged in the trial to satisfy any doubt which might exist as to the accuracy of the test, again had the gun loaded exactly as before and again the speed of the great bolt was given in the instrument room as 1,657 feet per second, which would enable the projectile to pierce and destroy an enemy's vessel coated with 32 inches of iron plating. It will be remembered that at Meppen, firing a pro jectile of $1,712 \mathrm{lb}$. with a powder charge of 451 lb ., Krupp registered a muzzle velocity of 1,648 feet per second, which is calculated to be equivalent to an energy of 32,242 foot tons or the penetration of 32 inches of iron armor. The three other 80 -ton gums of the Inflexible have to be tried under similar conditions as the one lately tested.
There seems to be no intention of submitting a tube of Sir Joseph Whitworth's so-called compressed steel to the New Gun Committee for consideration and report. Fresh from his recent victory in the United States gun competition, Sir-William Palliser proposes to bore out the steel tube of a large W ool wich gun to relieve the strain on the casing, and then to insert a.very long loose coiled wrought iron barrel on his well known plan. Notwithstanding the fact that no burst has taken place out of two thousand such guns which are in constant use in the British Empire and the United States, and that the Director of Ordnance of the United States Navy has proved that his guns can be fired with large harges without affecting their casings, it has been decided, as one of our daily contemporaries is informed, that nothing from Sir William Palliser shall be permitted to appear before the new Gun Committee for their consideration and report
The Italian Government have just ordered eight more 100 -ton guns to be made by Sir William Armstrong \& Co. They are to be breech-loaders, and as there will be no departure from the coil system in the construction of these weapons, the question will be brought to a practical issue whether large breechloading guns can be made on the coil system to compete with the steel breech-loaders of Herr Krupp. Eight 100 -ton guns represent a tremendous arma ment. Each shot will start from the powder chamher with a pressure of about 5,000 tons at its rear, and the energy stored up in the projectile as it leaves the muzzle will be equal to the raising of 44,000 tons a foot high. The penetrating force will be equal to 3 feet of armor at close quarters, with pro portionate reductions according to distance. There will be eight 100 -ton muzzle-loaders for the arma ment of the Duilio and Dandolo, those vessels car rying four each, and there will be eight breechloaders for the Italia and Lepanto. The muzzleoaders already supplied are characterized, like the Krupp guns, by great length of bore, and, of course, this feature will be maintained, if not further developed, in the breech-loaders. While the Woolwich 80 -ton gun has a bore only 18 calioers long, that of the Armstrong 100 -ton gun is between 20 and 21 calibers in length; but even the 80 -ton gun is proportionately longer than the Woolwich 38 ton gun, the latter having a bore of only 16 calibers.
The four 100 ton muzzle-loading guns, made by Sir William Armstrong for the Italian Government, but purchased by the British Government out of the vote of six millions, are destined to be emplnyed for the coast fortifications, the localities specified being Malta and Gibraltar.-The Engineer

The Dominion Exhibition.

The Dominion Exhibition at Ottawa was closed September 27, and though a success as an exhibition, it was finan cially a failure. The total gate receipts were only a little over $\$ 9,000$-less than half as much as was taken in at the Toronto fair last year.

Erratum.-In the description of the performance of Mr. Edison's electric generator last week, the figures showing the number of lights and the power required to produce them were omitted from a portion of the edition. The clause referring to these points should read: It requires but five horse power to drive the machine, and the current generated is sufficient to produce forty lights of sixteen candle power each. Mr. Edison has since informed us that the generator may be forced to do much more.

Scientific Discoveries the Basis of Invention Had not the steam engine been developed, it is likely tha railways, steamships, and all the numerous uses to which that instrument is now applied, would have been comparatively unknown. The discoveries of nitric acid, hydrochlo ric acid, oil of vitriol, and washing soda, by the alchemists, led to the erection of the numerous great manufactories of those substances which now exist in all civilized countries.

The discovery of zinc has led to an improvement in tele graphy. The discovery of nickel has led to the great mod ern use of German silverin the construction of electro-plated and other articles. The discovery of chlorine formed the basis of nearly all our modern processesof bleaching cotton and other fabrics. The discovery of oxygen has enabled us to understand and improve in a great number of ways the numerous manufacturing, agricultural, and other processe in which that substance operates.
There is probably not an art, process, or manufacture, which is not largely due to scientific discovery; and if we trace them back to their source, we nearly always find them to have originated in scientific research. The great pecuniary benefits arising from the application of science are generally reaped in the first instance by all great manufac turers, agriculturists, merchants, and capitalists. Countless fortunes have been made by means of processes and manu factures based upon scientific discovery. In a general way, however, the greatest pecuniary benefits arising from science sooner or later go to enrich the possessors of land.

the basis of invention

Discovery is usually the basis of invention. Science has shown that it is by means of inventions based upon new dis-
coveries that the greatest utilities are obtained, rather than coveries that the greatest utilities are obtained, rather than
by the exercise of invention upon knowledge acquired long by the exercise of invention upon knowledge acquired long sesses scientific knowledge. The discovery of a single substance, such as oil of vitriol, a washing soda, has led to the formation of many valuable inventions, patented or oth erwise. Nearly every manufacturer in this country is deriving, from scientific discoveries, advantagesforwhichthere have been made little or no payment to the discoverer.
For instance, the makers of coal tar and the dyers of woo and silk are using the discovery of nitro-benzine; manufac turers of picine acid and "French purple" have enjoyed the fruits of the labors of a well-known Englishman; the various telegraph companies, copper smelters, and makers of copper wire are using the discovery of the influence of impurities on the electric conducting power of copper. The makers of electro plate and of German silver are deriving great profits from the labors of Faraday; makers of Bessemer steel enjoy advantages derived from the spectrum discoveries of Kirch hoff; iron and copper smelters, metallurgists, dyers, calico printers, bleachers, brewers, makers of vinegar, white lead, varnishes, colors, soaps, phosphorus, oil of vitriol, and many others, are deriving benefit from the discoveries of Priestley Added to all this, there are the pecuniary advantages of the use of even only a few of these scientific discoveries where gains are enormous.

advantages of scientific research.

There is not a person in the Jnited States who has not de rived some advantage, in oneway or another, from scientific research. For instance, the advantages of gaslight, rapid postal service and transmission of goods, railway traveling, cotton goods, photography, improved medicine and surgery, preserved meats, condensed milk, etc., etc., have been reaped more or less by every one,
within the pale of the advantages.

Science has also by its developing process given employment to the whole army of workmen in numerous arts manufacturers, and occupations: In the United States sci entific research gives employment, in manufactures alone, to almost $3,000,000$ persons, whose wages it is estimated aggregate $\$ 775,000,000$ annually, and the products of whose work is valued at $\$ 4,500,000,000$ annually.
Hence the importance of scientific research. As has already been intimated, discoveries produced inventions, inventions give rise to processes and manufactures, the em ployment of workmen and others, and the erection of work shops and dwellings, towns and cities, and increase in the value of land-and all those great additions to the value of land are largely due to the unpaid labors of scientific disco-
verers; and it may be said that this nation, as well as England, has largely gained its wealth by, and is still living ina great degree on, the product of those labors.
In other words, a very great amount of the wealth of this nation has been obtained by the application of scientific knowledge to the substances and forces by which we are surrounded.
invention marks national progress.
Inventions differ from discoveries, just as a newly found truth in science differs from a newly discovered process. A
discovery is not in the form of a salable commodity; an invention is a combination and application to some useful or desired purpose of scientific truths which have been previously discovered. A new discovery soon finds itself incorporated in a text-book, and the inventor is left to apply it to some useful purpose, "without money and without price."
Apropos, the patent law, originated in the statute of James I. (1635), called the statute of monopolies, because it abolished patents for monopolies and only allowed patents for new inventions, holds out in advance a prospect of reward in
tent law in 1790. An invention nowadays is equivalent to a patent, and the granting of patents has not only affected industry, but encouraged art. In fact, our manufactured product is now double our agricultural product; figures
from the census show this,- and in showing this the West from the census show this, and in showing this the West
now manufactures more than New England, and this is the result of the last twenty-five years.
The manufactured product of the six grain growing States of the West is greater than the agricultural product. This growth in the whole country coincides in time and extent with the growth of patents; and the change of relation beween the East and the West has followed the change of relation in the number of patents taken out by the different sections.

CURIOSITIES OF INVENTIONS.

As has already been noticed, there is a vast différence be ween scientific discovery and the practical application of such discovery. Scientific discoverers may be considered the most practical men in existence, but it was three hundred years before the form of pin introduced for the benefit of the infant portion of the community was invented, after the ordinary pins were introduced.
No one would imagine that this infantile pin-a wire pointed at one end, and cunningly twisted, so that one end serves as a shield for the point of the pin-involved inven tion, and yet, although the need always existed, it was no until some happy thought brought it to the mind of some lucky inventor that it was brought into the world. Again, there were once eighteen operations to be performed in the manufacture of pins; twelve pounds of pins were made in a day, butinvention has produced a machine that turns out 160 pins a minute, and puts them on papers without the aid f human fingers. Again, go through the streets of a city ike Boston, and it will be seen that clocks are cheap by the bushel. Those clocks will keep good time, are tasteful in appearance, and serve all the purposes of the domestic clock Price $\$ 1: 25$.
America, by the way, is seizing the watch manufacture of the world. Switzerland went home from here in 1877 in dismay at the prospect that this industry of hers would be wept from her hands. The chronometer, the result of prize offered by the British government of $\$ 100,000$ for any mined within ten miles, is an invention. Harrison worked at it for forty years, and in 1767 he won the prize of $\$ 100,000$. It is recorded that he made one so perfect that it varied but ne second and a quarter in ten years.
An unlimited number of inventions cannot be made by means of a limited amount of scientific knowledge; and in consequence of the lack of new knowledge, manufacturers and others continue to suffer losses which might be avoided. mprovements are wanted in processes, employers of steam ngines want to obtain more power from the coals, iron puddlers want to economize heat; manufacturers in genera want to utilize their waste products, and prevent their pol uting the streams and atmosphere; and so on without end. Inventors are continually trying to supply these demands For instance, a machine for completely converting heat into mechanical force cannot be invented until more scien
tific knowledge is discovered. Yet generic inventions, like he Crompton loom and the machinery used in the manu acture of plain cotton sheetings, have produced enormous esults. There has been no radical change in the process of manufacture of these goods since 1835 ; the gain has been by adding a little improvement here and there.
In one of those mills, 90 hands, working 60 hours a week in 1878, turned out as much cloth as 231 hands, working $761 / 2$ hours per week, in 1838; and in another concern there were turned out 23,300 yards per year per operative, agains 9,574 yards in 1835; while each Crompton loom in a certain mill turned out 12,191 yards dst year against 7,766 yards in 1835 , and the cost of labor has been reduced almost on

We might pursue this project in this line of thought al most indefinitely, but we think we have obtaned enough of scientific discovery applied in a practical manner to demon strate the national importance of the former and the utility
of invention as applied in these latter days. As we intimated in the beginning of this article, some of the greates practical realities of this age had their origin in search after pure truth instead of after utilities.-Commerical Bulletin.

Fast Speeds.

The St. Louis Republican of recent date says: "Mr. F.W Hill, of this city, long a railroad man and late of the Hanni al \& St. Joe road, contributes the most interesting figures yet applying to the mile-a-minute controversy. From the
facts given it is shown that the speed of a mile a minute has facts given it is shown that the speed of a mile a minute has
frequently been exceeded by trains on American roads. In the year 1872, Mr. Hill states, Thomas McDonald, engineer of engine No. 36, a five-foot wheel freight engine on the Missouri, Kansasand Texas Railroad, ran from Parsons, Kan. to Sedalia, Mo., a distance of 156 miles, making more than a mile a minute over a greater part of the way. The occasion of this run was to get Phil Sheridan to Sedalia in time to catch the regular train on the Missouri Pacific Railroad in rder that he might reach Chicago in time to keep an en gagement. Col. R. S. Stevens, General Manager of the Mis souri, Kansas and Texas Railway, was on the train with Sheridan. The most remarkable thing about this run was
that the engineer did not know ten minutes before he started that a fast run was expected-in faet, he came in with a freight train late the night previous and expected to go out
on freight the next day. At four o'clock A. M. he was called out of bed and not given time to oil his engine properly, as the train was waiting. All railroad men will understand what it means to take an engine off freight and make such
run. The same gentleman also fugish the folloner run. The same gentleman also furnishes the following ccount of fast time made in different years:
' In the year 185-, Albany to New York, Hudson River Railroad, 144 miles, 2 hours and 49 minutes.
" In 1855, New York Central Railroad, locomotive Hamilton Davis, with six cars, 14 miles in 11 minutes.
"In 1850, Paddington to Slough, England, 18 miles in 15 minutes.

In 1862, Boston to New York, express train via Providenceand New London, 230 miles in 5 hours and 27 minutes unning time.
'In 1868, Indianapolis to Pittsburg, 381 miles in eight ours running time, $475 / 3$ miles per hour.
In 1868, Janesville, Wis., to Chicago, 91 miles in 90 minutes. This was done by an engine built at the shops of the Chicago and Northwestern Railroad Company by George W. Cushing. I believe the engine pulled two cars, and sidetracked once to let a train pass they met."

Recent Progress in Soudan.

The financial failure of the late Khedive of Egypt has compelled the abandonment of his splendid projects for the opening up of Central Africa. The provinces of Bahr-elGazal and Darfur have already been given up, and the great work so far carried out by Gordon Pacha has been stopped. The importance of this work may be indicated by the following achievements: Since 1874 a tract of country larger than the Southern States of America has been mapped with tolerable accuracy. Over 3,000 miles of telegraph lines have been constructed and are now working efficiently. The slave trade has been suppressed, which alone has involved campaigns of months'duration and revolts of entire proinces. The postal service bas been introduced, and a letter put in the New York post office with a five-cent stamp and addressed to the remotest station on the Bahr-el-Gazal or Darfur will reach its destination as surely as if addressed to Washington. The navigable rivers have been kept free from the "sud" or masses of vegetable matter which clog up all free passage, and which formerly stopped up the Nile nearly as far north as Berber. The natives have been taught the use of money, so that provisions and goods can be purchased where but a short time before raids had to be made to procure food. A system of military stations has been established, and by the aid of imported Indian elephants the native African elephants have, in several instances, been rained to serve as beasts of burden, thus greatly diminishing the cost of transportation. Telephones have also been introduced at all available points in the Soudan, and are of the most inconceivable service in quickly dispatching business.

Small Cotton Factories for the South.

The Star; of Wilmington, N. C., believes that on every creek of good size from Maryland to the Gulf it is perfectly practicable to set up a small cotton factory. In every county in North Carolina, especially in the cotton section, here ought to be ten or a dozen such factories at work. " They pay elsewhere-in South Carolina and Georgia, for instance. Why will they not pay in North Carolina? There is a factory in South Carolina that is a marvel in two re-spects-it costs but little, and it makes such a large percentage of profits. Let our people make an effort. Let every neighborhood or township organize for a small cotton factory. There is no doubt that they will pay if judiciously managed. As we have said, they have paid elsewhere, and they can be made to pay in our own State. It would be well if a practical man of business were sent into South Carolina to examine the little mill and get all the facts. We have the cotton, the water power, the labor, and even the capital, for it will require so little to start and keep running one of the mills reerred to. The prosperity of a State depends no little upon the diversity of crops and the multiplicity of industries. New England has grown immensely rich by its manufactures. Let North Carolina awake to its true interests and try small cotton factories."

England's Domain again Invaded.

Another of our American products, it is said, is materially affecting a great industry of England. Celluloid, in its use as a substitute for ivory, has already exercised a world-wide effect upon the ivory industry, the falling off in the demand having been felt in the remotest regions of Africa.
This composition of tissue paper, camphor, and certain chemicals, is already used for billiard balls; combs, backs of brushes, hand mirrors, and other toillet articles; whip, cane, and umbrella handles; every kind of harness trimmings; foot rules; chessmen; handles of knives and forks; pencil cases; jewelry of all kinds; pocketbooks; mouth pieces for pipes; cigar holders; musical instruments, doll heads; porcelain imitations; hat bands; neckties; optical goods; shoe tips and insoles; thimbles; emery wheels; shirt cuffs, collars, and a great variety of other articles which Englaind manufactures out of its ivory importations from her possessions in India and Africa.

Patentees, manufacturers, lovers of science, and others, who are not already subscribers to the Scientific American, will find it to their advantage to order it served regularly by their news agent, or mailed weekly direct from the office of publication. For terms see prospectus.

The Asbestos Rcolng (with white or gray freproo?
coutIng), now in use in all parts of the worla, is the onls coating). now in use in all parts of the worla, is the only
reliable substitute for tin. It is adaptea for steep or at roofs in all climates, costs only half as much as tin and is easily applied by any one. samples and descrip-
tive price lists sent free by H . W . Johns' $\mathrm{Mf}^{\prime} \mathrm{f}$ g Co., 8 8 Maiden Lane, New York.

2usiness and extsoual.

The Charge for Insertion under this head is One Dollar

 a linefor each insertion; about eight words to a line. Advertisements must be received at mublication office as early as Thursday morning to appear in next issue. The publishers of this paper guarantee to adver weekly issue.The most durable and economical protective coating in the world for tin roops, exposed brick walls, etc., is Maiden Lane, New York, sole manufacturers
The E. Horton \& Son Co., Windsor Locks, Conn manufacture the Sweetland Improved Horton Chuck. Special Tools for Railway Repair Sho
ders Machine Works, Philadelphia, Pa.
Wanted-The address of Mr. Good, or any manu Pacturer of Steam Generators inside the fire box or fur-
nace of steam boilers. Address M. L. Slocum, Point nace of steam boilers.
Washington, Florida.
For Sale.-One large Corliss Engine, 23×48, with 6 -12 ft. x 27 in. face wheel, right hand; now running
good order. The Arlington Cotton Mills, Wilming in good
ton, Del.
Books on Applied Science. Catalogue free. E. \& F. N. Spon, 446 Broome St., New York.

A saving of 25 to 33 per cent of customary outlays can be effected by use of the Asbestos Liquid Paints, which
are the purest, finest. richest, and most durable paints ver made for structural purposes. Samples of sixteen newest shades for dwellings sent free by mail. H. W.
Johns' Mf'g Co., sole manufacturers, 87 Maiden Lane, Johns' M‘'g'g
New York.

Brass or Iron Gears, histfree. G. B. Grant, Boston
For a thorough practical education in the duties of the National mechanical engineers and firemen, apply to Tapping Water Main Pipes.- Machines for tapping Steam Traps; best and cheapest in use. No blowing Steam Traps; best and cheapest in use. No
hrough to start. T. Sault, New Haven Conn.
The Friction Clutch that is doing work in many places
satisfactorily, that has never been done by any other, can be seen at Institute Fair, New York. D. Frisble \& Co., New Haven, Conn
Nickel Plating.--Sole manufacturers cast nickel an odes, pure nickel salts, importers Vienna lime, crocus,
etc. Condit, Hanson \& Van Winkle, Newark, N. J., and 92 and 94 Liberty St., New York.
Steam Excavators. J.Souther \& Co., 12.P.O. Sq. Boston.
The Secret Key to Health.-The Science of Life, or Self-Preservation, 300 pages. Price, only $\$ 1$. Contains
fifty valuable prescriptions, elther one of which is worth more than ten times the price of the book. Mllustrated sample sent on receipt of 6 centsfor postage.
Dr. W. H. Parker, 4 Bulfinch St., Boston, Mass.
The Baker Blower runs the largest sand blast in the
world. Wilbraham Bros., 2318 Frankford Ave., Phila.,Pa. Forsaith \& Co., Manchester, N. H., \& 213Center St., N.
Y. Bolt Forging Machines, Power Hammers, Comb'd Hand Fire Eng. \& Hose Carriages, New \& \& danand Machin-
ry. Send stamp for ilius. cat. State Just what you want.
Wrights Patent Steam Engine, with automatic cutff. The best engine made. For prices, address william
For Solid Wrought Iron Beams, etc., see advertise-
ment. Address Union Iron Mills, Pittsburgh, Pa., for
H. Prentiss \& Co., 14 Dey St., New York, Manufa H. Prentiss $\&$ Co., 14 Dey St., New York, Manufs, TheHorton Lathe Chucks; prices reduced 30 per cent. Adaress The E.Horton a son Co., Windsor Locks, Conn. Hydraulic Presses and Jacks, new and second hand Lathes and Machinerr for Polishing and Butting Metals. Bradley's cushioned helve hamm
Sheet Metal Presses, Ferracute Seeillus.ad. p. 20 Band Saws a specialty. F.H.Clement, Rochester, N.Y. Diamond Planers. J. Dickinson, 64 Nassau St., N.Y. Split Palleys at low prices, and of same strength and appenrance as Whole Pulleys. Yocom \& son's Shafting
Noise-Quieting Nozzles for Locomotives and Steamboats. 50 different varieties, adapted to every class of
engine. T. Shaw, 915 Ridge Avenue, Philadelphia, Pa. Stave, Barrel, Keg, and Hogshead Machinery a spe-
cialty, by E. \& B. Holmes, Buffalo, N. Y. Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior. Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Be
Oak Tanned Leather Belting, Rubber Belting, Cotton Belting, Polishing Belts. Greene, Tweed \& Co., N.York Automatic Machines for grinding quick and accurate. Planer, Paper, Leather, and other long knives. The best
Solid Emery Wheels and Portable Chuck Jaws. Made byAmerican Twist Drill Co.., Woonsocket, R. I., U.S.A.
For best Portable Forges and Blacksmiths' Hand For best Portable Forges and Blacksmiths' Hand
Blowers, address Buffalo Forge Company, Buffalo, N. Y. Diamond Saws. J. Dickinson, 64 Nassau St., N. Y. Pat. Steam Hoisting Mach'y. See illus. adv., p: 282. SteamHammers, Improved Hydraulic Jacks, and Tube
Expanders. R. Dudgeon, 24 Columbia St.. New York. Expanders. R. Dudgeon, 24 Columbia St., New York. Sawyer's Own Book, Illustrated. Over 100 pages of
valuable information. How to straighten saws, etc. valuable information. How to straighten saws, etc.
Sent free by mail to any part of the world. Send your
full address to Emerson, Smith \& Co., Beaver Falls, Pa.

Eclipse Portable Engine. See illuactrated adv., p. 189. Tight and Slack Barrelmáchinery a specialty. John
Greenwood \& Co., Rochester, N. Y. See illus'd adv. p. su. $\$ 250$ Horizontal Engine, 20 horse pöwer. See illusM
Magic Lanterns and Stereopticons of all prices. Views
illustrating every subject for public exhibitions. illustrating every subject for public exhibitions. Proft-
ble business for a man with small capital. Send stamp or 80 page illustrated catalogue. Mcallister, Manufacuring Optician, 49 Nassau St., New York
Shafting, Pulleys, and Hangers. Nadig \& Bro., Allen Lathes, Planers, and Drills, with modern impro ments. The Pratt \& Whitney Co., Hartiora, Conn.
Improved Steel Castings; stiff and durable; as so nd easily worked as wrought iron; tensile strength not Steel Casting Company, Pittsburg, Pa.
For best low price Planer and Matcher, and latest improved Sash, Door, and Blind Machinery. Send for
descriptive catalogue to Bowley \& Hermance, Williamsimproved
descriptiv
port, Pa.
The only economical and practical Gas Engine in the market is the new "Otto" Silent, built by Schleicher.
Schumm \& Co., Philadelphia, Pa. Send for circular.
Machines for cutting and threading wrought iron pipe Machines for cutting and threading wrought
a speciaity. D. Saunders' Sons, Yonkers. N. Y.
Steam Engines, Automatic and Slide Valve; also BoilSteam Engines, Auom \& Pryor, Rochester, N. Y. See ers. Wood bury, Booth \& Pryor,
illustrated advertisement, page 29 .
Microscopes, Optical Instrm's, etc. G. S. Woolman,
116 Fulton St., N. Y. Cylinders, all sizes, bored out in present pos

L. B. Flanders Machine Works, Philadelphia, Pa

HINTS TO CORRESPONDENTS. No attention will be paid to communications unless
accompanied with the full name and address of the writer Namesand addre
iven to inquirers.
given to inquirers.
We renew our request that correspondents, in referring to former answers or articles, will be kind enough to ome the date of

Correspondents whose inquiries do

Persons desiring special inf them. of a personal character, and not of general interest should remit from $\$ 1$ to $\$ 5$, according to the subject, as we cannot be expected to spend time and lab
obtain such information without remuneration. Any numbers of the Scientific American Suppl aENT referred toin these columns may be had at this office. Price 10 cents each.
(1) J. R. M. asks for the best way to fill barometer tabes so as to exclude the air. The tubes are
traight, aiout 34 inches long. I have never flled any, and am afraid I will fail without some instruction. A.
Invert the tube, pour a little pure mercury into it. Invert the tube, pour a little pure mercury into it.
Boil the mercury to expel the air and moisture. Add more mercury, boil again, and so on until the tube is
filled. As the vapor of mercury is very poisonous, you should not inhale it.
(2) J. J. D. asks (1) how screw heads are nicked. A.. By means of a circular saw or cutter. A carries their heads over the edge of the saw. 2. How
can I make in malleable iron a groove $1-32$ inch wide can I make in malleable iron a groove 1-32 inch wide and $3 反$ inch deep? A. By employing a circular saw.
See article on rotary cutters, p. 340, vol. 40, of ScIENTific American.
(3) C. F. B. asks: 1. Can I make a tele phone from the shop to the office, distance 800 feet, without a battery? A. Yes. 2 What would be best for a
diaphragm? A. Use ferrotype platesormica. 3. Would diaphragm? A. Use ferrotype platesormica. 3. Would
a finecopperwire be best for a conductor; if a finecopperwire be best for a conductor; if so, how
should it be supported, and what gauge should it he? A. No. 24 copper wire will answer. Support it on elastic rubber bands or strings. 4. How large should the diaphragm be? A. 2 inches in diameter.
(4) W. A. asks whether mercury in a glass ube will rise more degrees at a certain heat when tube will rise more degrees at a certain heat when
weighted thanit will if not weighted. A. As mercury
is practically incompressible, there can be little or co is practicall
difference.
(5) W. H. B. asks (1) how to stain the white part of a black walnut board so as to have it the same
color as the rest. A. Apply a thin asphaltum stain, asphaltum dissolved in turpentine). 2. How to make shellac varnish? A. See p. 252, current volume. 3. Is it proper to apply it with a brush; if so, how can I make
it so as to have a smooth surface? A. Apply it with camel's hair brush. 4. To ebonize walnut wood? See vol. 40, p. 91 (18)
(6) W. S. H. asks: What is the Herreshoff coil boiler? A. For illustrated description of this boiler p. 210, vol. 40, Scientific Amer can
(7) W. T. writes: We have a skylight in our store (dry goods) which is surrounded by high brick
walls, and black goods shown under this skylight take on an unnatural color from the glare of the sun shining upon the red brick walls. Can you tell us of anything that we can doto remedy this and obtain a soft white
light? The skylight is made of hammered glass. A. light? The skylight is made of hammered glass.
(8) T. E. G. asks: 1. How many feet of copper wire of No. 16, 18, and 20 American gauge are equal to a resistance of one ohmP A. No. 16, 310 feet;
No. 18,200 feet; No. 20,110 feet approximately. The resistance will vary with different specimens. 2. What is the average resistance of the gravity battery? A. 2
to 4 ohms. 3. What should be the resistance of elec-tro-magnet so as to use the battery to the full? A. The resistance
the same.
(9) W. B. asks: What finally becomes of heat? Is it changed into some form of force, or is
ccattered and wasted and resolved intonothing? sattered and wasted and resolved into nothing? The
sun bas been for countless ages pouring his store of heat upon the earth. If it receives nothing back, where it, but notforwhat has been received since their formation. As the earth and the materials of which it is
composed are limited, it seems that the capacity for the composed are limited, it seems that the capacity for the storage of force must also be limited. Again, when
those forces are liberated, the same amount of heat is those forces are liberated, the same amount of heat is
evolved that was originally stored there. If there is no loss, the heat must accumulate somewhere. Then, a planet. What becomes of the rest? A. It is assumed that heat is simply the rapid vibration of an imponderable elastic ether which pervades all matter and inifnite space. This hypothesis as to the nature of heat is now
generallyadmitted. If it be correct, it is evident heat generallyadmitted. If it be correct, it is evident heat is not matter, b
fore be stored.
(10) W. R. writes: To an acoustic tele phone line, 1,500 feet long, No. 22 copper wire, with 10 cottoncord insulations, I propose to add at each end an
ordinary electric call bell (size $21 / 2$ inch box pattern), ordinary electric call bell (size $21 / 2$ inch box pattern),
and to use the above wire for the line. The ground connections will be a gas pipe at one eud and an iron water pipe at the other. 1. Cau I make the battery at one end answer for both? A. Yes, by asing closed
circuitbells. 2. How many. cells of Calland battery are circuitbells. 2. How many. cells of Calland battery are
necessary? A. Probably six or seven will answer. 8. of the wires from the battery, which is connected to the main line? A. Either. 4. How are the wires arranged From ground to one pole of thebattery, from the other pole to the line, from the line to the ground. Place in your line the closed circuit bells and keys according to your convenience.
(11) A. S. P. asks how papier mache is or brown paper in water, beat them into a paste, add glue or gum, size and press intooiled moulds.
(12) O. A. asks: 1. Can I with a plane slide valve to steam engine cut off at $1-3$ or $1 / 2$ the stroke witb as good results and economy as I can with a cylinder
valve; ifnot, why is it? A. Probably one style of comvalve; ifnot, why is it? A. Probably one style of common valve is as good as another, but it is impossible to
cut off with such valves shorter than about 2-3 advancut off with such valves shorter than about 2-3 advan-
tageously on account of the compression of the steam within the cylinder. 2. What are the objections (if any) to a slotted cross head. It is full as cheap to make and the motion of pistonand crank pin are alike, when with the ordinary connecting rod the potions are not
the same. A. "Slotted " cross heads are frequently the same. A. "Slotted "cross heads are frequently
used in small engines and steam pumps, but the fric is too great and wear too rapid for larger engines
(13) J. R. writes: I want to buy a work on engines, one contalning steamship and stationary
engiles, also works on mechanical drawing. Which engiles, also works on mechanical drawing. Which
are the best in use on the subjects named? A. Probaare the best in use on the subjects named? A. Proba-
bly. "Roper on Land and Marine Engines" and "chard
(14) W. R. writes: A is building a small turninglatheof cast iron 5 feet long; spindle is of cast steel, with a bole clear through, and is to run in a case
hardened iron box in the front, and behind is a plug fitted in, alsooof case-hardened fron, which is V-shaped on Its extremity, and is to run in a center of hard cast steel; the spindle, where it runs in the box in front, also being hard and of conical shape. B claims the box
should be of hardened steel instead of iron. Who is right, A or B? A. We do not think there can be any material differe.
surface is steel.
(15) N. P. R. asks: 1. Which is considered to be the best and most practical signal for railroad
switches, those showing bars at different angles, or color signals? Which is most in use in this and in the old country? A. Semaphore signals are largely in use, and we believe increasingly so, for daylight signals,
though colored signals are used on many of our princithough colored signals are used on many of our principal railroads. We think for daylight signals the sema - generally preferred
(16) B. E. \& S. M. write: Having had a dispute with B about the travel of a valve, I contend that the true meaning of travel is the distance the valve tremity of its stroke and back again to its middle position; but BsaysI am mistaken. Who is right? A. The extreme positions, or in case of a direct connection twice the throw of the eccentric.
(17) L. G. writes: A planer in our factory has been giving us considerable trouble for a long time. The boxes heat, compelliug us to re-Babbittevery week
and sometimes oftener. Inoticed an article in the Screndific AmyRrcas several months ago concerning the use of plumbago in such cases. I cannot findthe pape now. Canyon name a remedy, or rather a preventive, to the heating A. You can try fine plumbago and oil, your shafts and boxesare out of line, or the cylinder may be out of balance.
(18) H. G. H. asks: If two balls of the same size, and one twice as heavy as the other, be
dropped from a great height, which will reach the ground first? Of course there will not be much difference, but will there be any? A. If falling in the atmo falling in a vacuum, there would be no difference
(19) G. B. asks: What is the best compo tion for expansion metal? A. Brass is generally used
(20) H. S. writes: You say in your answe J. G. B., in Sotientipic Amer can, September 27,1879 that 150 revolutions $=300$ feet per minute, and $15 G$ revothat is,whence you obtain the 300 feet and 500 feet in find ing the horse powerof an engine. It occurs on page 204 it requires two strokes toone revolution. In the first case
the stroke is 1 foior, hence the speed is $2 \times 150=300$ feet;
and in the second case the stroke is $12-3$ feet, two数 $=31.3$ feet $31-3 \times 150=500$ feet
(21) G. H. S. writes: In your issue of the 27 th inst., Inoticed an error in the flgures given in answer inches; diameter or pinion should be 5.60 inches, without any regard to pitch or number of teeth.
(22) W. S. W. writes: 1. I have a con denser working with a pair of Corliss engines, 20 inch it acts on the principle of an injector, and a column of water, with a head of 9 feet, flows through a nozzle (which has án adjustable nozzle that regulates the quantity of water passing in), and the steam from either or bothengines meets this water at the combining noz-
zles and is condensed. \cdot After having condensed the zles and is condensed, \cdots After having condensed the steam, the column of water flows through an expanding
tube and is discharged into a canal. The natural head gives this column a a velocityof about 24 feet per second and when there is a 27 inch vacuum, the velocity i increased to over 400 feet per second. Now with both engines on, we have ron with a steady vacuum of 26 inches to 28 inches, but when running only the 20 inch engine, the vacuum would dance up and down from 27 inches to 15 inches, and the only way we could get it
steady was to admit a small quantity of air into the exsteady was to admit a small quantity of air into the ex-
haust pipe, when it would hold at 22 inches. explain why this should act so, as we have always aimed to exclude every particle of air to hold a vacuum? A. It is difflcult to say, without actual examination, precisely what is the cause of the peculiar action of your condenser; it may be due to an air leak, but we are in clined to think that it is the irregular action that we have heardattributed to this class of condensers. 2 ten miles. Now there our dam extends back som power in our water wheels, by keeping the water 3 inches below the level of the dam, so as to make the water flow more rapidly towards it; or by keeping it right up to the top of the dam and having the 3 inches more head? A. Keep your 3 inches additional head. 3 .
How is is that authorities like Cooper, Haswell, Buel, How is it that authorities like Cooper, Haswell, Buel, etc., state that rubber belts will drive 25 per cent and
30 per cent morethan leather ones? I had a 12 inch leather belt, driving from a 30 inch to a 20 inch pulley 10 feetapart,and keeping 16 roving frames up. On some days it would slip badly, so I put on a 12 inch, 4 ply, rubber belt, thinking there would be a gain of 25 per ceut, and the result was it would not drive eight frames. I had to take it off and put on the old 12 inch
leather one, with a six inch rider on the outside, and I leather one, with a six inch rider on the outside, and I
haveheard no complaints. A. We do not remember any experiments to test the relative adhesion of leather and rubber belts under the conditions of actual use. It is probable that in a damp atmosphere rubber would
(23) F. M. asks for a receipt to make a black ink for the copying press described in the ScIENTIF © A AEERIOAN. A. Dissolve soluble nigrosine in about 5 parts of boiling water and strain through a fin
(24) W. R. H. writes: We want to use erosene in a liniment, but the offensive odor is very objectionable. Can you tell me how to destroy it without taking from its virtue as a medicine? A. It capnot The odormay be cloaked by the addition of various es sential oils without materially affecting its propertis
(25) A. E. F. writes: I wish to make good red sealing wax in quantities of about 51 lb . I have no receipt for my purpose. Will you kindly furminh find mula? A. Yellow resin, $1 \mathrm{lb} . ;$ shellac, $5 \not x_{2}$ oz.; Venice turpentine, $51 / 2$ oz.; vermilion, 1 oz. Melt the shellac in a copper pan overa a fre, add the resin, pour the turpen-
tine slowly in, and soon afterwards add the vermilion, tine slowly in, and
stirring continually.
(26) F. E. H. asks: What will make the darkest brown lacquer to put on copper bronze? A. $21 / 6$
oz. shellac, 2 quarts wine spirit, 2 oz. gum sandarac, $1 /$ oz. shellac, 2 quarts wine spirit, 2 oz. gum sandarac, $1 / 2$
oz. gum elimi. Mix and keep warm until solution is oz. gum elimi. Mix and keep warm until solution is
effected, then strain and color with dragon's blood and afiectea, then strain a
(27.) R. F. B. asks: 1. Can commercial zinc be made.suffciently pure for battery use by remelt
ing? What is the dross left in the crucible? A. You ing? What is the dross left in the crucible? A. Your
question was answered on p. 187 (4), carrent volume Zinc cannot be purified by fusion, as you suggest. The dross is zinc oxide, formed by the action of atmospheric oxygen on the molten metal. 2. Can electroplating be done as economically with the gravity battery as with the Smee? How do thev compare as to first cost? A.
Yes, on a small scale; they are cheaper. The gravity Yes, on a small scale ; they are cheaper. The gravity
form is the cheapest. 3. Please explain how stencil form is. the cheapest. 3. Please explain how stencil
dies and solid burming brands are made. A. Stencil dies are made by drlving red hot steel into suitable matrices, afterward fling them into shape. Burning brands are moulded in sand from a pattern and cast.
(28) J. H. K. writes: I wish to know how to make Pharaoh's serpents' eggs, as I have need of some in experiments I am about to make. A. To solution of
ammonium sulphocyanide add mercuric nitrate solu tion; mercuric sulphocyanide is precipitated as a white
powder. This washed, made while moist ito little powder. This washed, made while moist into little
cones, and thoroughly dried, are the so-called serpents nes, and thoroughly dried, are

Minerals, etc.-Specimens have been re
 examined, with the results stated:
S. G.-The sample contains lime phosphate, clay,
quartz sand, iron oxide, lime carbonate quartz sand, iron oxide, lime carbonate and sulphate, of
soine value forfertilizing purposes. A full analysis would be advisable.-H. J.D.-A,B,D, and E are banded agates, of very little value in the rough state. C is a variety of jade and jasper. F is jasper, of little economic value

COMMONTCATIONS RECEIVED
 On Sea Sickness. By C. K. M

On Explosion of the Alaska. ByJ. H.

