Sriontifir Amriram.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
NO. 3' PABLSHED WEEELYAT YOW, NEW YORK.

o. ग. MUNN.

A. E. BEACH

copy one year postare included.ed copp, six months, postane included

VOL. XLI., No. 10. [New Series.] Thirty-fifth Year. NEW YORK, SATURDAY, SEPTEMBER 6, 1879.

Contents.	
(Illustrated articles are marked with an asterisk.)	
the	Miler, American vs. Brit
	Notes and
arican Instiute exninuition.. 154	Ozakerite or mineral wax........ ${ }^{\text {Pas }}$
site metal lib	Porroleum, July product of...... 149
iel miming (ist	Powfered substances
(eate	Rump, boiler feed
	Ratand mice ext
chase or	
ing	sawmisw
lighthouse, n	
macees and the costotofliving	Starch
,ters 20].:	
Flour mixed with mineral subst.: 154 . Sweelled	
Hyarophobia successfullytreated 144 : Turbo shells and se	
$\begin{array}{lll}\text { Intelligent workmen needed...... } & 144 \\ \text { International dairy fair. } & 154 \\ \text { Inventions, engineering. } & 153\end{array}$	

TABLE OF CONTENTS OF the scientific american supplement INO. 192.

For the Week euding September 6, 1879.

Price 10 cents. For sale by all newsiealers.

 ${ }_{1} 1$ figure

 chemical pro

 Electro-idenosition of Nickel. Watson's improvement.Magretization of Molten Iron.
Chernorts experiments.

INTELLIGENT WORKMEN NEEDED.

Notice was taken in a recent issue of this paper of the experience of a large shoe manufacturer of this State, who advertised in Boston and New York for twenty-five shoe fitters to work in his factory, offering full current rates and
steady work. The advertisement brought one application. steady work. The advertisement brought one application.
About the same time a Boston firm advertised for a bookkeeper, and the next day's mail brought three hundred and forty-seven answers.
During the same month an advertisement for a clerk, in a Detroit paper, brought one hundred and thirty applications the first day, and a greater number of letters and personal applications the next day
An advertisement for a week in the same city, calling for good carpenter, brought only four replies.
It is altogether probable that in any considerable city in the land, an advertisement for a book-keeper or retail clerk will bring fifty times as many replies as an advertisement for a fair workman in any trade.
It is also probable that in any and every city the average earnings of clerks are nowhere near so large as the earnings of workmen of average skill in the various trades.
Further, it is fairly certain that, with equal capacity, industry, and thrift, the young man who learns any trade will achieve a reasonable competence sooner than the young man who sticks to clerking; while the chances for materially improving one's condition are more n han behind the counter or at the desk.
Why is it, then, that the boys all want to be clerks? Why is it that intelligent parents encourage them in looking for a chance to "get into business," and in looking down on me-
chanical employments-as though there could be any calling chanical employments-as though there could be any calling more wretchedly mechanical than average clerking? Why
is it that teachers almost invariably train their pupils to "look above" mechanical pursuits?
What the country wants now is workmen-intelligent, industrious, thrifty workmen; men who can do skillfully the work that waits for the doing-who can invent new means and better processes for developing the crude resources of the land, and for converting brute matter into life sustaining and life-enriching wealth. Mere clerks and record keepers are at a discount. There are too many of them. And the
professions, so called, are almost equally crowded with men who have nothing to do. There never was a time when ability to do something real and practical was worth so much as now. Yet our young men swarm after clerkships. Why is it?
hydrophobia successfully treated with curare
The Medical Record of Aug. 9 gives a detailed report of a case of hydrophobia successfully treated with curare, by Dr. Ad. Offenberg, of Wickrath, Rhenish Prussia.
The subject was a servant girl, 24 years of age, who was bit in the heel by a rabid Spitz dog, July 28, 1874. Two days after the wound was cauterized by means of a concentrated solution of caustic potash, and shortly after the girl underwent a course of treatment for hydrophobia. Subsequently, for three months or more, the wound was kept suppurating under the direction of a local physician. Seeing that the case was not receiving proper treatment, the pastor of the place brought about the transfer of the patient to a hospital, where she was received October 8. At that time the wound, on the outside of theleft foot, extendingfrom the tendo Achillis over the dorsum, presented a reddish granulating surface about the size of the palm of the hand. Under a simple dressing the granulating surface became much smaller, and until October 16 no change was observed in the patient's health and temper. Symptoms of rabies appeared that evening, and by $10: 45$ P.M. were pronounced and decided. Curare was then injected, under the skin, and the dose was repeated several times during the night, with favor able effects. The last convulsion occurred at twenty-thre minutes past four in the morning.
The details of the case would be out of place here; suffice It to say that the patient slowly recovered health and strength, isolated convulsive movements of slight severity occurring at
intervals until the 24th, while impaired vision and oversensi iveness of the eyes to light continued still longer. On Dec 3, the wound on the foot being completely cicatrized, and the patient's general health being good, she was allowed to return to her home. By January, 1875, she was able to resume her duties as servant, though her original health and strength were not restored for more than a year.
The case seems to have been one
The case seems to have been one of genuine hydrophobia, notwithstanding the fact of recovery. The circumstance, (who was bit by patient attended a hydrophobic neigh or died of the disease), witnessing his convulsions and other symptoms, makes her case possibly one of simulation.

EARLY ADVOCATES OF SHIP RAILWAYS.

Since prominence has been given to Capt. Eads' suggestion for a ship railway across the Isthmus of Panama, there have arisen quite a number of claimants to the credit of first proposing this solution to the great problem. Thus far we
have seen none antedating the plan illustrated in the fir have seen none antedating the plan illustrated in the first volume of the Scientific American; and no one seems to
have taken the matter more to heart than the late Horace Day, for he went so far as to take out patents for his device in this connection.
Before that time, however, the project of transporting ships by railways had been enthusiastically advocated by
this city as early as 1856 , and copyrighted the year before While discussing the competence of the general governmen to undertake investigations and experiments of a scientific and useful character, for the furtherance of national prosperity, Mr. Friese observed that water conveyances had been increased in size, through many increments, from the slight canoe to the vast steam ship, while land carriages had made no such progress. At that time the rail-car in use was but a small remove from the common road wagon. The American rail-car now shows a considerable increase in carryingcapac ity, yet the gain in no way approaches that made in ship ping.
From this point of view Mr. Friese asked: "Why do we not construct rail-cars as broad and capacious as steamships? Why do we not dip up steamships from a river or ocean, place them in a rail-car, and whirl them overland to another river or ocean? Is it not pitiful that the swift and magnificent vehicles which convey ourcitizens and our com merce over the stormy deep, and which bear within them the power to scale the lofty mountains and skim the wide plains of our continent, should be checked in their proud career by a narrow isthmus? Why shall not the same power which turns a paddle-wheel through the water be made, by an easy mechanical contrivance, to turn a driving-wheel on a rail? The same power will be immensely more efficient on a rai than on the water, from the fact that friction on a rail is much less than on the water at the same speed, especially a a high rate of speed. Steamships themselves might form the bodies of cars, when placed in a frame, or cradle, ove suitable running gear. If the track be made wide enough cars may be converted into rolling hotels, two or mor stories high, and may contain the chambers, parlors, dining rooms, and other conveniences of steamships, if not of sta tionary public houses. The great law of economy, in regar to time and power, and fuel and labor, demands the estab lishment of broad roads, suitable for ships, and for large cars on the principal thoroughfares, say, on the isthmu routes of Panama, Tehuantepec, and Nicaragua, and on the runk, if not on the branches of the great road which must connect the Atlantic with the Pacific, across the center of our continent. So the Isthmus of Suez may be overcom by a ship railroad. Unless unusual physical obstacles inter vene, ship railroads may connect the Black Sea and the Caspian, and perhaps even the Aral, and this with the rive Yang Tse Kiang. There would be as much comparative saving of time and power and labor by the employment of arge cars instead of small ones, as there is in the employ ment of ships instead of canoes. Large cars could be driven with safety at a rate of speed not attainable by small ones. If the cars be adapted to steamships, these can leave the Atlantic ports, either going east or west overland, and arrive in the East Indies in a few days, without breaking bulk. For such a road, rivers, lakes, and inland seas would serve as switches and depots.
It is needless to follow Mr. Friese in his remarks concern ing the military and naval advantages of ship railways, or to criticise his sweeping indifference to geographical obstruc tions. Practical railway men will probably laugh now, as they did a quarter of a century ago, at the idea of increasing the economy of ordinary transportation by largely increasing the size of cars; yet it is quite possible that for short port ages, to avoid long voyages, ship railways may be more asily constructed and more economically than ship canals in which case Mr. Friese is obviously entitled to his shar of credit for early appreciating their advantages. That the dea of such a means of transportation was original with him is not for a moment to be supposed. The same may be said of Mr. N. W. Evans, who also claims priority in the invention, though he first.suggested it in 1854, some ten years after the project had been illustrated in the Scientific American. Mr. Charles W. S. Heaton, who also puts in claim, is fully twenty years behind, his proposition baving been made as late as "1864, or early in 1865."

american vines in france.

A notable illustration of the balance between animal and vegetable life under natural conditions is furnished by the power of American vines to withstand the attacks of phyl oxera. For unnumbered ages the conflict between the plant and the insect has been going on in this country, the result being the survival of those species of the grape capable of enduring the attacks of the parasite. This power of resistance has been found to reside in the rapid lignifying of the roots of the American grapes, so that the punctures of the phylloxera are comparatively harmless. They affect the outer bark only, causing little excrescences which fall off like warts. European vines, on the other hand, have not been subject to such invasions (until recently), and are entirely unable to cope with the pest. When pierced by the insect the tender roots decay, and the entire plant perishes. The consequence is that having once been introduced in Europe, as it was about twenty years ago, the phylloxera meets with no resistance, and the indications are that nothing short of the extermination of all European vines will stay its destroying progress.
Our readers are familiar with the decision of the French Commissioners in favor of the substitution of the native grape stocks by those of American origin, as set forth in their official report, translated for the issue of the Scientific American, dated August 2. Our American Consul at La Rochelle, Mr. George L. Catlin, now writes that the prefect of that department has taken steps to establish there a monster nursery of American grapes (notably the Jacquez

