

GREEN CAROLINA ANOLIS; OR, THE AMERICAN CHAMELEON.
 by daniel c. beard.

Perhaps the first creature that attracts the eye of the Northern naturalist upon landing at Florida is a small, slender lizard, which appears omnipresent, to be seen running up and down the walls of the Old Fort at St. Augus. tine, peering in at the windows of the hotel at Pilatka, scampering over the logs of the swamp at Tocoi, or scrambling along the garden fences at Jacksonville. It may also be seen exhibited for sale along with young alligators, wildcats, black bears, and many other queer objects to be found in the jewelry stores at Jacksonville.
The specimen from which my illustrations are made I captured at Tocoi. When first taken he was of a sooty black; five minutes afterward, when I opened the handkerchicf in which I was carrying him to show my prize to a little creature I had wrapped up, a beau tiful emerald green lizard. It was only then that I discov then that I discov ered my specimen to be the so-calle American chame
leon. I was some what ashamed of my ignorance unti I met a certain na turalist from Michi gan, who had made quite a collection of what he took to be what he took to be distinct species o saurins, and ba carefully preserved them in spirits, only to find upon inspec tion, that they were all exactly alike in form and color all baving assumed a yellowish-brown tint afterimmersion
in alcohol. Two anoli that I kept in captivity proved very gentle pets, and would run over my hands waiting eagerly for me to catch fies for them. Although quick in their movements, and able by the help of their tail to spring quite a distance, these little animals never could capture the tlies for themselves unless I first crippled the insect by removing a wing. They loved the sunshine and fresh air; the latter they would swallow occasionally in great gulps, expanding a sort of pouch under their neck by the process. Though gentle when treated with kindness, when tormented they would show fight, opening their mouths in a ludicrous way. One, after trying in vain to bite a lead pencil, with which I had been stroking his back and otherwise plaguing him,

deliberately shook off his tail, and scampered away, leav

 deliberately shook off his tail, and scampered away, leav-ing three fifths of his length wriggling upon the floor, where ing three fiths of his length wriggling upon the floor, where
it continued to twist for some time. A drop or two of blood moistened the stump where the tail had been, but though the loss of the latter appeared to cause no physical pain the little cripple seemedashamed of his odd appearance and hid himself in corners. He remained in my room for a month longer, but I seldom caught sight of him.
It is the color-changes of this little saurian that attract and interest all observers.
The negroes and even intelligent white inhabitants of the district frequented by this reptile tell many fabulous stories of its wonderful powers in this respect. Experiments with specimens which were in my possession at different times seemed to demonstrate that emerald green, gray, and sooty black and reddish yellow were the limits of its power. When frightened or pleased it turned green; if agitated for some time in apparent indecision, the color would fade and
return in blotches. Under an ordinary magnifying glass it could be seen that the hollow around the eye changed first. Then the hexagonal plates upon the head showed the color, commencing at the edges and gradually spreading over each plate, the centers being the last points to turn. If a number of these animals be placed in alcohol they will be found to assume a dirty yellow or brown tinge. This is probably the natural hue of the skin with the coloring matter re moved. The pigments appear to be contained in a network of vessels beneath the skin, and to be somewhat, though not altogether, under control of the animal. One, placed upon a bright crimson cloth, assumed a reddish yellow color, and though it did not approach the brightness of the cloth, a
friend, I was amazed to find, in the place of the dark, dingy

MORTENSEN'S TORPEDO BOAT.

casual observer would hardly have noticed the lizard mo tionless upon it.
Green is its favorite color, and black I never saw but in one instance. When hiding in the Spanish moss or upon a tree trunk it assimilates the gray, while yellowish red it assumes with apparent effort. When put and left upon a red substance or in a cigar box, the color of the latter it approaches very nearly. From tip of nose to tip. of tail measures from five to six inches, the tail being three fifths of its total length. The head is rather large, triangular in shape, apex at the nose, and covered with small hexagonal plates from the nose to just behind the eyes. The rest of the body is covered with small papillous points; the nostrils are means of these screws the boat may be propelled forward o backward, and raised or lowered, as may be required.
The boat is capable of being operated wholly under the water; or the top portion may be removed, when it may be propelled on the surface.

Dévelopment of the Lizard.

At a recent meeting of the Royal Society Prof. K. Par ker presented a communication embodying part of his wor on the structure and development of the skulls in the lizard group. His researches on the embryos of the common Brit ish lizards have led him to very unexpected results. Hith erto we have been accustomed to regard the crocodiles and
near apex of the nose; the animal has no apparent external near apex of the nose; the animal has no apparent externa
ears; it has bright, intellizent, almond-shaped eyes; large mouth, ten well defined teeth upon each side of the upper mouth, ten well defined teeth upon each side of the upper
jaw, and four well defined teeth in the lower jaw, the interjaw, and four well defined teeth in the lower jaw, the inter-
mediate space being filled with minute points; and four well developed legs, five toes upon each, each toe swelling out into a soft pad, terminating in a hooked claw. The pad or middle of the toe, under the magnifying glass, shows anodd arrangement of folds or fiounces in the skin, each fiounce, tuck, or fold being armed upon its edge with minute points, one half of them pointing up and the other half down, as shown in the illustration. Thus may we explain the creature's ability to run up or down the side of a house with equal facility
In the illustration I have shown the lizard upon my finger, with mouth open; the dark color representing its favorit green hue. At the bottom in the moss is the same animal in his gray coat. In the circle appears a magnified view of the teeth, the second toe of the hind foot much enlarged, zhowing the peculiar artangement of the folds of the skin upon the under side; and an enlarged view of the hind leg. and the head as it appeared under the glass while changing its color.

A NEW TORPEDO BOAT

The accompanying engraving represents partly in section a torpedo boat recently patented by Mr. H. Mortensen, of Leadville, Col. The hull A, of the boat, has an arc-shaped keel, B, that runs the entire length, and projects beyond the stern. A portion of the keel is cut away at the stern to receive the rudder, C , which is pivoted in the stupport thus formed, and is provided with two arms, a, one on each side, that project at right angles to the face of the rudder, to re ceive the thrusts of the screw rods, which project through the stern of the boat, one on each side of the keel. The hull is divided into several compartments, one of which is de signed to contain the men that operate the torpedo-project ing mechanism, another contains the men who introduce the torpedo into the projecting apparatus and attach it to the movable rod, and there are compartments for containing either air or water, as occasion may require. In the upper part of the boat there is a chamber which contains com pressed air for the supply of the crew and for working the machinery. Under the several compartments already men tioned, there is a compartment for containing water forced in against an air cushion. This chamber acts as an ac cumulator of power which is expended in working the tor pedo projecting apparatus.
A cylinder containing a piston is placed longitudinally in the hull, and provided with a loading chamber which pro jects through the bow of the boat.

The water required for working the piston may be forced into the accumulator chamber before the boat is started. or it may be forced in by hand or otherwise while the boat is under way.
The rods by which the rudder is operated are threaded one being provided with a right hand and the other with left hand thread, and work in fixed nuts, and are provided with driving mechanism operated by a suitable motor or by hand.
The boat has a removable upper portion, which is secured to the hull by means of bolts. The top is comparted in the same manner as the hull, and both top and hull are provided In the top there are two entrances, d, provided with hinged covers tha are packed to ren der them water tight.
The compa:t ments for contain ing the crew ar provided with win dows, which ope inwardly, so tha theymay berepaired or replaced in cas of breakage.
In each side o the boat there ar recesses inclined in opposite directions each of these re cesses contains screw propeller, the shaft of which ex tends into the boat and is connected with 'a motor. By
turtles as the highest groups of the reptile family, chiefly on the evidence of the structure of the soft and more important vital organs. But the evidence from the skull leads Prof. Parker to regard the lizards not only as the mosthighly specialized of reptiles, but the group which approaches most closely towards birds. The term "lizard" is, however, at present used so vaguely as to include the hatteria of New Zcaland and chameleon, both of which are often regarded as types of distinct orders of reptiles. The chame leon, however, which in many respects approximates toward crocodiles, is regarded as the lowest of the lizards, and even more distant from the higher types than tortoises and turtles. Yet the lizard skull is found to be but slightly modified from that of the snake. On the whole the charac ter of their skulls leads to the conclusion that birds differ less from lizards in structure than does the ordinary perfect insect from its pupa. Of old the strong resemblance which the lizards termed "blind worms" present to serpents led to the conclusion that we see in them the limbs first coming into existence, but Prof. Parker not only re gards the serpent as the more ancient and more generalized animal, but also as one which shows evidence of its degradation by the loss of limbs, which he believes the ancestral forms of the serpent types possessed. Of late years it has been customary to attach great importance in classification to the modification as presented by the ear bones. Judged by this standard the lizard is closely related to the tortoise and crocodile, and all three types are regarded as difering but little from the bird in this respect. The snake, how ever, is of a lower grade in the structure of the ear, whin
this feature in the chameleon is even less specialized than in frogs and toads. As concerns the theory of the skeleton and frogs and toads. As concerns the theory of the skeleton and
of the skull, Prof. Parker is led by his researches to conof the skull, Prof. Parker is led by his researches to con-
clude that the skull was the part of the animal first formed. clude that the skull was the part of the animal first formed.
Subsequently the joints of the backbone came in successive gencrations into existence, while the limbs and the bones which support them were of more recent origin than the trunk. From the indications furnished by development of the embryo there is reason to believe that some of the lower divisions, which succeeded one another in a line from the front backward, and from this, as well as from the supposed comparatively late origin of the backbone, Prof. Parker is led to describe as absurd the well known "vertebral theory of the skull," originated both by Goethe and by Oken, and elaborated by Owen. Another important conclusion of Prof. Parker's, based chiefly on the researches of Mr. Balfour, is that the neck comes into existence by a long series of evolutions as a result of the subdivisions of the second vertebra, and serves "to bind the shortening head to the retreating body." In conclusion Prof. Parker expresses his opinion that even those who are content to work at the development of the lowlier types, such as the worm and the crayfish, are helping to throw light on the solution of the vertebrates.

Photography on wood
 by propessor J. husnis.

I adopted the method of exposing gelatinized paper alone under a negative, and when the chromium salt had been washed out, placing it on a plate of glass and laying on the
ink with a very small glue roller. With this I succeeded ink with a very small glue roller. With this I succeeded tones, which could be at once laid on the wood block, and be printed off at one impression. Gelatine paper can be easily prepared, and kept in stock, according to the process described in my book Das Gcsammtgebiet des Lichtdrucks, by placing sheets of paper in a perfectly horizontal position, and coating them with a dilute solution of gelatine, and they need only be sensitized at the moment of use with a one per cent solution of chromate; by this means the above described method is rendered thoroughly simple and practical, as well as being certain in its results. The woodblock itself requires a very simple preparation; it must be rubbed down with whiting to which some adhesive substance has been added. This rubbing can be best effected by the ball of the hand. Gelatine paper can also be purchased from the dealers, and even my own photo-lithographic transfer paper will answer the purpose very well, provided that, before immersing it in the chromate solution, it be wiped over a few times with a damp sponge, and then rinsed well in clean water. This is done to remove any soluble matter from the surface. Afterwards the paper is dipped for some minutes in a one per cent solution of chromate, then drained, and hung up to dry at an ordinary temperature. Sensitized in this way it remains good for the above named purpose for from three to five days.

The Manufacture of Glass in Pittsburg.
Pittsburg, Pa., produces more than half the glass made in the United States. Its factories number 73, with 690 pots, and give employment to 5,248 hands, whose wages approach $\$ 3,000,000$ a year. The materials employed in the manufacture were, the past year, 12,110 tons soda asb, 48,340 tons of sund, 152,000 bushels of lime, 1,218 tons nitrate soda, 793,500 bushels of coke, 4,525,760 bushels of coal, 4,025 cords wood, 6,055 tons of straw, 2,760 barrels of salt, 250 tons pearl ash, 330 tons of lead, 150,000 fire brick, 2.955 tons of German clay. The packing boxes cost $\$ 484,250$, and required 2,109 kegs of nails. 96 wagons and 130 horses were employed in hauling. The space occupied by the buildings is equal to 208 acres, and the capital in buildings, machinery, and grounds is, in round numbers, $\$ 3,500,000$. The business produces about $\$ 7,000,000$ a year.

Memoranda for Garment Dyers.-Substances and

Reagents Sultable for Removing Spots.

Steam has the property of softening fatty matters, and hus facilitating their removal by reagents.
Sulphuric acid may be employed in certain cases, especially to brighten and raise greens, reds, and yellows; but it must be diluted with at least 100 times its weight of wate and more, according to the delicacy of the shades.
Muriatic acid is used with success for removing spots of ink and iron mould upon a great number of colors which it does not sensibly affect.

Sulphurous acid is only used for bleaching undyed goods, straw hats, etc., and for removing fruit stains upon white woolen and silk tissues. The fumes of burning sulphur are also employed for this object, but the liquid acid (or a solu-
tion of the bisulphite-not bisulphate-of soda or magnesia) tion of th
is safer.
Oxalic acid serves for removing spots of ink and iron and the residues of mud spots, wbich do not yield to other cleansing agents. It may also be employed for destroying the stains of fruits and of astringent juices, and stains of urine which have become old upon any tissue. Nevertheless, it is best confined to undyed goods, as it attacks not merely
fugitive colors, but certain of the lighter fast colors. The best method of applying it is to dissolve it in cold or luke warm water, and to let a little of the solution remain upon the spot before rubbing it with the hands.
Citric acid serves to revive and raise certain colors, especially greens and yellows; it destroys the effect of alkalies and any bluish or crimson spots which appear upon scarlets. In its stead acetic acid may be employed.
Liquid ammonia, formerly called volatile alkali, is the most energetic and useful agent employed for cleaning tis sues and silk hats, and for quickly neutralizing the effect of acids. In the latter case it is often sufficient to expose the goods to the fumes of this alkali in order to remove such spots entirely. Ammonia gives a violet cast to all shades produced with cochineal, lac, the redwoods or logwood, and all colors topped with cochineal. It does not deteriorate silks, but at elevated temperatures it perceptibly attacks woolens. It serves to restore the black upon silks damaged by damp.
The carbonate of soda (soda crystals) serves equally in most of the cases where ammonia is employed. It is good for hats affected by sweat.
Soda and potash only serve for white goods, of linen, hemp, or cotton; for these alkalies attack colors and injure the tenacity and suppleness of woolen and silk. For the same reason white soap is only to be recommended forcleaning white woolen tissues.
Mottled soaps serve for cleaning heavy stuffs of woolen or cotton, such as quilts; for such articles which do not re quire great suppleness or softness of feel the action of the soap may be enhanced by the addition of a small quantity of potash.
Soft potash soaps may be usefully employed in solution, along with gum arabic or other mucilaginous matters, for cleaning dyed goods, and especially self colored silks. This composition is preferable to white or marbled soaps, as it re moves the spots better, and attacks the colors much less.
Ox-gall, which can be obtained from the butchers in a sort property of diss bag (the so-called gall bladder), bas the injuring either the color or the fiber. It may be used preferably to soap for cleaning woolens; but it should not be employed for cleaning stuffs of light and delicate colors, which it may spoil by giving them a greenish yellow, or even a deep green tint. It is mixed also with other matters, such as oil of turpentine, alcohol, honey, yolk of egg, clay, (fuller's earth), etc., and in this state it is used for cleaning silks.
To obtain a satisfactory result gall ought to be very fresh. To preserve it a simple method is to tie the neck of the gal bladder well with a string, and hold the bladder in boiling water for some time. This being done it is taken out and let dry in the shade.
Yolk of egg possesses nearly the same properties as ox gall, but is much more costly. It must be used as quickly as possible, for it loses its efficacy with keeping. It is some times mixed with an equal bulk of oil of turpentine. $-M_{o n i}$ teur de la Teinture.

Whooping Cough and Fungus.

Some years ago M. Svetzerich made the assertion that whooping cough was caused by a certain fungus. This as scrtion seems lately to have been confirmed by the re searches of M. Yschamer, who says he has found certain lower organisms in the spittle of whooping cough patientsorganisms not met with in any other disease accompanied by cough and expectoration. Examining the spittle after it
has been a short time suspended in water, there are found corpuscles about the size of a pin's head, of white or slightly yellowish hue, and these show, besides apathetical cells, a network frame of polygonal meshes, with rounded greenish sporules; at a more advanced stage, colorless hyphæ are seen, and large sporules, yellowish or brownish red, sometimes even ramified. It is interesting to learn that the champignons in question are quite identical with those which, by their agglomeration, form the black points on the skins of oranges and the parings of certain fruits, especially apples.
Thus, M. Yschamer, by inoculating rabbits with this dark matter, or even causing it to be inhaled by men, produced fits of coughing several days in duration, and presenting all | the characters of the convulsive whooping cough.

The Geological Relations of the Atmosphere.
At one of the recent sessions of the French Academy of Sciences a communication, with the title which heads these notes, was read from Professor Henry Hunt. This paper of which we make a brief abstract from the text contained in one of our French exchanges, puts forth a curious theory Taking into account the enormous quantity of carbonic acid stored up in the vegetation forming the coal deposit, and the much greater quantity of the same gas which is met with in the calcareous formations, Professor Hunt belicves that it must be admitted that this gas has an extra-terrestrial origin. He believes that our atmosphere should be considered as He believes that our atmosphere should be considered as a
universal cosmic medium, condensed around the centers of attraction by reason of its mass and temperature, and occu pying all the interstellar spaces in a state of extreme rare faction.
By considering the question from this standpoint he de duces the conclusion that the atmospheres of the different celestial bodies should be in equilibrium, and so much so that every change that supervenes, be it either by condensation of aqueous vapor or carbonic acid, or by the setting free of oxygen or any gas whatever, would make itself felt inal the rest of the planets through the effect of diffusion. So then, during those periods in which a great absorption took place on the face of our globe, our atmosphere would have been constantly fed by new portions of gas coming from the universal medium, and consequently from the gases sur rounding the other plancts.
From this it is understood that the proportion of carbonic acid in the atmosphere of the other planets must have ex perienced an equal diminution, at the moment that the excess of oxygen spread over the surface of our globe was qually diffused through their atmospheres.
Professor Henry Hunt sces in this theory the explanation of the origin of the cosmic dust.

A Quicksilver Motor

A street car motor to be run by quicksilver is being manufactured at Aurora, Ill. About 800 pounds of cillcksilver is to be placed in a reservoir at the top of the car and to pour down over a cast iron over-shot wheel, producing an equiva lent of three horse power. The quicksilver is to be returned to the reservoir by pumps placed underncath the car, to be operated by a brakeman by means of a crank on the fron platform.-St. Louis Miller.
There must be some mistake here in the calculations. Al lowing a distance of 10 feet from the quicksilver reservoir to the point where it strikes the wheel, then the utmost force yielded by the fall of the 800 pounds of liquid metal will be a little less than one quarter of one horse power. To pump up the liquid again would keep the brakeman constantly at work. He could propel the car faster and to better advan tage by simply walking behind the vehicle and pushing it forward with his hands, thus dispensing with the weight and cost of 800 pounds of quicksilver, reservoirs, pipes, wheels, etc. In order to realize three horse power from a wheel arranged as above, 10,000 pounds, or five tons, of quicksilver would be required; and to pump it back the labor of tifteen men would be necessary. We fear that the new motor is destined to stand still.

The Metric or Decimal System.
The following simple table gives all that there is in the metric or decimal system of weights and measures:

mONEY.

10 mills make a cent.
10 cents make a dime.
10 dimes make a dollar.
10 dollars make an eagle.
Lenath.
10 milli-meters make a centimeter
10 centi-meters make a decimeter.
10 deci-meters make a meter.
10 * meters make a decameter.
10 deca-meters make a hectometer.
10 hecto-meters make a kilometer.
10 kilo-meters make a myriameter.

weight.

10 milli-grammes make a centigramme.
10 centi-grammes make a decigramme.
10 deci-grammes make a gramme.
$10 \dagger$ grammes make a deccagramme
10 deca-grammes make a bectogramme
10 hecto-grammes make a kilogramine.
10 kilo-grammes make a myriagramme
capacity.
10 milli-liters make a centiliter.
10 centi-liters make a deciliter.
10 deci-liters make a liter.
$10 \ddagger$ liters make a decaliter
10 deca-liters make a hectoliter.
The square and cubic measures are nothing more than the squares and cubes of the measures of length. (Thus, a square anda cubic millimeter are the square and the cube of which one side is a millimeter in length.) The are and stere are ther names for the square dekameter and the cubic meter -Boston Transcript.
*A meter is equal to 39 :368 American inches.
\dagger A gramme is equal to $15: 433$ grains troy
\ddagger A liter is equal to 2.113 American pints.

