The Microphone.

Thomas S. Tail, of Baroda, India, communicates to Na ture a suggestion as to new uses for the microphone. Two subjects of interest in connection with the practical appli cation of the microphone have lately been brought to my notice, says the writer, by Raja Sir T. Madava Row, K.C.S.I., Dewan of Baroda. In the hope of securing a little assist ance froon some of your scientific readers I hasten to lay them before you
The first question is with reference to the use of a microphone as a stethoscope. It seems that native ladies of high position decline altogether to allow a doctor to examine the chest in the ordinary manner. Sooner than submit to such an examination they would prefer to die-cer tainly rather a staggering fact for those imbued with European ideas. In the cause of humanity it is therefore desirable to do something for those whose position and caste would be imperiled by direct examination. If the microphone could be so delicately arranged as to transmit the auscultatory sounds, a medical ear, even at a distance, would surely be able to detect the existence of any disease of the heart or lungs. In the few experiments that we have made with our limited appliances we have been able to hear the ticking of a watch at a distance of about 200 yards, and the roar of a black ant when attacked by his companion, but as yet we have heard no internal sounds from the human breast. Perbaps with better devised insiruments some one may have been able to obtain that which his yet been denied to us. I am sure many native ladies would be glad to get an affirmative answer to the question, " Can the microphone be used as a stethoscope?"
The second subject seems to be a more difficult one to grapple with:
"In the undulating region of Travancore, where the water bearing strata heave and fall according to the locality concerned, I have come across a set of professional men who are generally consulted by those who wish to sink wells in view to ascertain whether, at a given spot, a well may be sunk with the probalisility of finding water near enough. These professional men undertake to predict where the springs will be found near, and where they will be found at great depth, and their predictions are generally verified with great accuracy. I took some trouble to ascertain how these men are enabled to predict the proximity, or otherwise, of the springs underground. Brushing aside the ceremonies and incantations they perform in view to deceive others and perhaps themselves also, I found that they detect the proximity of the subterrancan springs by lying down on the bare ground in the dead silence of night, with the ear in contact with the ground, and trying to hear the sound of the flow of water in the strata beneath. By practice the ear is made very sensitive, and the degree of distinctness with which they hear the sound of flowing water enables them approximately to predict the depth of the springs. It is in this manner that appropriate spots are selected for sinking wells.
" Now, would any of the instruments you are experimenting with magnify the sound of the subterrancan flow of water so as to greatly facilitate the process I have described? If so, it may be a considerable practical gain."
To this query I have hitherto been able to return no other answer than a negative one. Both the subjects are practical ones, and I only hope that there will be before long some light cast upon them.

Le Conte's Theory of Mountain Formation.
Dr. Joseph Le Conte, in his "Elements of Geology," lately published, gives a very complete theory of mountain formation, based upon the supposition that the earth is solid. The earth is regarded as made up of concentric isothermal shells, each cooling by conduction to the next outer, and the outermost by radiation into space. For a long time the outcrmost would cool fastest. But a time would come when the outermost would become of a nearly fixed temperature, receiving heat from external and internal sources, while the interior would still continue to cool by conduction. Theinterior, because cooling faster, and also because the amount of contraction for equal cooling is greater at high than at low temperature, would contract faster than the exterior. The interior would tend therefore to shrink away from the exterior, which, following it down, would be subjected to powerful horizontal pressure, and must finally yield somewhere. Mountain chains are the lines along which the yielding of the surface to horizontal thrust has taken place. This yiclding is not by upbending into an arch, leaving a hollow space beneath, nor yet into such an arch, filled and supported by an interior liquid, as usually supposed; but by mashing or crushing together horizontally, like dough or plastic clay. with foldings of the strata, and an upswelling and thickening of the whole squcezed mass.

The theory here presented accounts for all the principal facts associated in mountain chains. This is the true test of its general truth. It explains satisfactorily the following facts: 1. The most usual position of mountain chains on the borders of continents. 2. When there are several ranges belonging to one system, these have been formed successively coastward. 3. Mountain chains are masses of immensely thick sediments. 4. The strata of which mountain chains are composed, are strongly folded, and, where the materials are suitable, are affected with slaty cleavage; both the folds and the cleavage being usually parallel to the chain. 5 . The strata of mountain chains are usually affected with metamorphism, which is great in proportion to the height of the chain and the complexity of the foldings. 6. Great fissure erup-
tions and volcanoes are usually associated with mountain chains. 7. Many other minor phenomena, such as fissures, slips, and earthquakes, it equally accounts for.

A NOVEL BRIDLE BIT.

We illustrate herewith a novel bridle bit recently patented by Dr. J. G. Peterson, of Morganton, N. C. It consists of a single piece of steel wire doubled and bent at right angles with the bar and twisted together, as clearly shown in the engraving. An expert blacksmith can make these bits very rapidly, as no forging is required; and the bit, when finished, is very strong, and is claimed to be equal if not superior to the more expensive kind.

PETERGON'S BIT.

It is said that Americans can make anything out of wire; this bit is another example that goes to prove the statement true. Further particulars may be obtained by addressing J. G. Peterson, M. D., as above.

A NEW CONTINOOUS CALR HORSESHOE.

When a prominent horseman states that in the city of New York there are not ten horses in a hundred that have been upon our street pavements one year that have sound feet, and when eminent veterinary surgeons say that nearly all of their business comes from the present mode of shoeing horses. it becomes a matter of serious consideration to own ers of horses to know whether there is a way of avoiding the evil. The remedy seems to lie in the adoption of a shoe of standard form adapted to the peculiarities of the horse's foot and capable of being easily applied by any blackenith. A shoe which, we are informed, fulfills all requirements bas been recently patented by Mr. John D. Billings, and is manu factured by the John D. Billings Patent Horseshoe Company, 265 Broadway, New Yorl:.
Fig. 1, in the engraving, represents the shoe as seen from the top, showing a level bearing surface. Fig. 2 shows the under or calk side of the shoe.

fig 1

Fig. 2

BILLINGS' HORSESHOE

This shoe is made from an L shaped bar of stecl, the seel being, by a patented process of manufacture, completely enveloped in a coating of tough iron, which renders t capable of being bent hot or cold, and imparts to it the desirable qualities of lightness, strength, durability, and elasticity. The bars being cut into suitable lengths and the ends of the pieces sheared off, they are then bent into shape around forms or dies made from drawings of the foot; the nail holes are then punched, and the shoe is complete.
The shoe has a contimuous calk, which is similar in form o the crust or wall of the hoof, and is, therefore, the most natural, and, as stated by the manufacturers, the most efficient shape for a horseshoe. The upper surface of the shoe has a narrow beveled edge or rim, which takes the place of the clip in the ordinary shoc.
It is stated that the peculiar form of the shoe adapts it to all kinds and conditions of feet. The manufacturers state that it has cured tender feet, when existing, in every instance where the shoe has been tried; and the change which takes place in the tender footed animal, that has had an old shoe replaced by this, is said to be quite remarkable. While formerly he gave expression to the uneasiness and pain from which be suffered, by frequently shifting his weight alternately from one foot to the other, with the new shoe he stood squarely upon his feet without a sign of discomfort, showing clearly that he was at his ease.
The many advintages claimed for this shoe cannot be well numerated here, but we are informed by thema nufacturers , that it is largely in use, and is giving excellent satisfaction.
© Crrreg youdence.

The Black Spot of Jupiters, Disk.

To the Editor of the Scientific American:
The call for information through your columns relative o the black spot on Jupiter's disk seems to elicit but little attention. In the last number of the Scientific American 1 notice that Mr. R. D. Schimpff, in reply to Mr. Eadie, says that "it was unquestionably the shadow of one of Jupiter's moons," from which any reader would infer that it could not possibly be anything else. By reference to any good work on astronomy, it will be seen that both bright and dark spots have been observed in Jupiter's belt at irregular intervals for the last two centuries. It was by watching these that the rotation of the planet on its axis was ascertained. One of these spots, first noticed in 1665, disappeared and reappeared regularly in the same form for more than 40 years.
On the night of August 23, the writer, while watching a transit of one of Jupiter's satellites, noticed the appearance of the black spot above mentioned. It came into view at 8:54 P.M., some time before the shadow of the moon had left the planet, and disappeared at $12: 13$. The next night at 8 P.M. it was plainly visible near the middle of the northern belt, the planet having made about $23-10$ revolutions. On the night of the 10th inst. I saw it again. It is distinguishable from the shadow of a satellite bybeing both larger and darker, in fact black. As to what it is, or the cause of its existence, we do not pretend to say, but we do say that it is a veritable spot, and by no means the first one ever seen.
Corsicana, Texas, Nov. 23, 1878.

Shifting of the Grain Belt.

The Bureau of Agriculture furnishes some very interesting ables, illustrating the westward movement of the centers of grain production. The product of wheat per capita, in New England, has fallen between 1849 and 1877 from four tenths to three tenths. In the same period in the Southern and South Atlantic States, the per capita has risen from 2.38 bushels to $6 \cdot 11$ bushels, so that those States, from buyers, have become sellers of wheat. In the Ohio and trans.Missishave become sellers of wheat. In the Ohio and trans Missis-
sippi States, in the same period, the per capita produced sippi States, in the same period, the per capita produced
has increased from $12 \cdot 65$ bushels to $30 \cdot 49$, and in the Pacific has increased from $12 \cdot 65$ bushels to $30 \cdot 49$, and in the Pacific
States from $2 \cdot 16$ bushels to $27 \cdot 49$ bushels. The wheat crop States from $2 \cdot 16$ bushels to $27 \cdot 49$ bushels. The wheat crop
of 1849 was $100,485,944$ bushels, divided into equal volumes by the lines of 81° west from Greenwich. In 1877 the crop was $365,094,800$ bushels, and the center line of production the meridian of $89^{\circ} 6^{\prime}$ west. In 1849 the corn product was 591,071,104 bushels, and the central line in the 85° west longitude. In 1877 the corn product was $1,342,558,000$ bushels, and the center line $89^{\circ} 6^{\prime}$. In 28 years the movement westward has been: for wheat, $8^{\circ} 6^{\prime}$ (about 500 miles), or from the eastern line of Ohio nearly to the center of Illinois; for corn, $4^{\circ} 6^{\prime}$ (250 miles), or from the eastern line of counties in Indiana nearly to the longitude of Cairo.

The Antiquity of Weaving.

The earliest records of the art of weaving are to be found in the Old Testament. Pharaoh arrayed Joseph in "vestures of fine linen," and Job lamented that his days were swifter than the weaver's shuttle, the use of the simile proving that the shuttle was a common and well known object at the time. Portions of woven cloth and a weaver's shuttle have been found among the remains of the Lake dwellings, and as the latter are believed to belong to the stone age, the origin of the art may possibly have been nearly coincident with the existence of man. Few if any savage races have with the existence of man. Few if any savage races have
been discovered altogether ignorant of the art, and many of them have brought it to a considerable degree of perfection; while the relics of the ancient Peruvians and Egyptians show that they were skilled weavers. Some fragments of Egyptian cloth were found on examination to be woven with threads of about 100 hanks to the pound, with 140 threads to the inch in the warp, and 64 in the woof. Although the art was practiced extensively, and with no mean skill, in very ancient times, it progressed slowly and gradually-by small steps at long intervals. The great advances in the art of weaving have been made during the past 300 years, mainly during the past century.

New Coral Beds Near Stcily.

During the past year a new and valuable coral bed was discovered on the southwest of Sicily, between Sciacca and Porto Empedocle. The coral is not only abundant, but of excellent quality. One coral merchant of Torre del Greco, having fifty barks employed on the bed, secured in a few days ten tons of coral of the very finest quality. The Algerian coral grounds have been nearly deserted on account of the new finds.

Military Improvements Wanted.

The Board on Army Equipment, in session in Washing. on, invites brief communications from persons in the military service regarding any improvements that can be made in the general equipment of troops, which have been sug. gested by observation and experience, and requests inventors and manufacturers to send to the Board samples, accompanied by drawings and specifications, of any improvements made in the equipment of troops, keeping in view the lessening of weight to be carried by the soldier, increasing his efficiency, and at the same time preserving and increasing the durability of the articles to be used.

