Spidere and Ants-Ieland of St. Thomas.

A large ground spider (Lycosa) is very abundant in the island, inhabiting a hole in the ground about six inches in depth and from half aninch to an inch in diameter, and with a right angled turn at the bottom to form a resting chamber for the spider. Some negro boys dug the spiders out for me. for the spider. Some negro boys dug the spiders out for me. They said that their bite was poisonous, and that they f
lizards, leaving their holes at night to search for them. lizards, leaving their holes at night to search for them.
The boys soon grubbed one out with a knife, a great he
The boys soon grubbed one out with a knife, a great heavy
venomous-looking brute about three inches across. It bit venomous-looking brute about three inches across. It bit
savagely at my forceps. The holes of these spiders were so common that on one tolerably clear patch of about an acr in extent they were dotted over the entire area at about one or two feet distance from one another I noticed the holes at once, and was astonished when the boys told me they were spiders' holes.

A species of white ant (Termite) is very com mon, which makes large globular nests as much as two feet in diameter, and which are perched high up in the fork of a tree. The nests are made of a hard brown comb. From the bottom of the tree covered galleries, about half an inch in breadth, lead up on the surface of the bark to the nest, looking like long narrow brown streaks upon the trunk of the tree. The galleries usual ly follow a somewhat irregular course up the trunk to the nest, reminding one of the curious deviations which are always to be seen in foot paths cut out by people walking across fields in their endeavors to go straight from one point to another. The galleries, or rather tubula ways, for they have bottoms to them, are made of the same tough brown substance as the nests and are cemented firmly to the bark. Though they are so broad in order to allow numerous ant to pass and repass, they are only high enough for the ants to walk under. I broke one of these galleries, and a number of soldier termites came out and began biting my hands, hardly making themselves felt, but as brave as if they had a sting. I lad to break a considerable length of the gallery before I got to any of the working termites, as they had retired from the scene of danger.
A species of peripatus is found in St. Thomas, but I did not succeed in meeting with any. An agouti, a species of rodent (Dasyprocta) occurs in the island, and Mr. Wyman told me that it was common in the gullies near his sugar plantation.-H. N. Moselsy, "Notes by a Naturalist."

THE CYCLODES.

The cyclodes are so called on account of their teeth, the crown of which is rounded, and which reminds of the sharp and cutting teeth of other reptiles that belong to the same class. The cyclodes have a large round trunk, which diminishes regularly from the neck to the extremity of the tail. The tail and body form one piece. The snout is blunt and the tongue is fiat, is covered with scales, and has the shape of a lance, with an incision at the end. The eyes are oval and oblique, and are behind the mouth. The neck is very short and narrow. The body is covered with smooth scales arranged like a coat of mail. The claws are small in proportion to the size of the body. The fingers are short, plump, and nearly cylindrical. Three species of cyclodes are found in New Holland-the cyclode of Casnarina, the black and yellow cyclode, and the cyclode of Boddaert.
The giant skink, or the cyclode of Boddacrt, is shown in the engraving. is shown in the engraving. It has a more elongated
head than the other two head than the other two
species. The upper part species. The upper part
of the body is marked with transverse alternating fawn colored and brown stripes. Sometimes these stripes pass down the sides, when the brown or black ones are covered with large yellow spots. Back of the eyes there is a dark stripe which ex tends as far as the shoul ders. In some of the animals the top of the head is reddish, while in others it has a black border. This specics attains a length of about fffteen inches.

Like most of the skink family it is very slow in its movements and will lie for hours per will lie for hours per-
fectly immovable, and generally prefers warm and obscure places. While loosen all of the animals as quickly as possible, as in a case walking the belly drags along the earth, for the of fire, the bar, A, is moved longitudinally by means of the legs are short and too feeble to support the body. It lever, F, bringing the notches in the bar opposite the bits, lives on pulpy fruit, small animals, and young birds.-La $\left\lvert\, \begin{aligned} & \text { B, as shown at } \mathrm{E} \text { (Fig. 1), permitting all of the animals to }\end{aligned}\right.$ Nature.

CYCLODE OF BODDAERT, AT THE JARDIN DES PLANTES, PARIS. inclined bottom running out into the stall. In the upper part of this recess is pivoted a gravity catch or detent, C, which extends downward into the recess just far enough to leave a triangular chamber for receiving the triangular bit, B, which is attached to the end of a chain or rope about the animal's neck. This arrangement is clearly shown in Fig. 2. It will be noticed that the bar, A, extends along in front of the recess which contains the bit, B, and in conjunction with the gravity catch retains the bit.
In the bar, A, there are notches corresponding in position with the recesses in the troughs, and at one end of the bar there is a lever, F , by which it may be moved longitudinally.
There are two ways of releasing the animals. If only a portion are to be released, or if it is desired to release them separately, it may be done by throwing up the gravity catch as shown in dotted lines in Fig. 2. When it is desired to

This device has met with the approval of farmers' clubs and farmers who have examined and tested it. Further information may be obtained from Mr. James D. Watters, of Bel Air, Md.

Experiments in Crosn-Breeding Plants.

Professor W. J. Beal, desirous of testing the accuracy of some of the statements in Darwin's work, "The Effects of Cross and Self Fertilization of Plants," has been making some experiments, the results of which he records in the American Journal of Science and Arts. His first experi ments were with Indian corn. Yellow dent corn was ob tained from two men in different parts of Michigan. In one case the corn had been kept ten years or more on the same farm, and in the other instance fifteen years or more on the same farm. In both cases the corn was much alike. The two lots were planted in alternate rows in a plat by itself. The tops of one set of rows were all cut off, thus securing a perfect cross on those stalks. Seed from this cross was saved and planted to compare with corn not so crossed The yield from the crossed seed exceeded the yield of that not crossed, as 153 exceeds 100 .
The next experiment was with black wax beans, a variety much cultivated for the purpose of supplying an early crop, and a kind that may be eaten, pod and all, while young. Eight rows were planted, alternately old and crossed stock, and fifteen beans planted in each of the rows This was on May 31, 1878. On the 22d of July the pods on the two lots of plants were about alike in size, but those fit for cooking numbered 108 on the old stock, and 353 on the crossed; a difference of over three to one in favor of the crossed stock. On August 9 th the pods fit for cooking, or past that condition, were 883 on the old stalk and 1,048 on the crossed. On or before the 16th of September all were harvested. The total number of pods was found to be, on the old stock 818 and on the crossed stock 1,850 . The beans of the old stock weighed $29 \cdot 77$ ounces, while those of the crossed stocked weighed 70.33 ounces, or nearly in the proportion of 100 to 236. Six lots of fifty beans each were taken at

WATTERS' FASTENING AND RELEASING DEVICE.

 random from the old stock, weighed, and the average for the trough in each stall, there is a vertical recess having an fifty found to be $269 \frac{2}{3}$ grains. A like experiment with the crossed stock gave an average of 213_{6}^{1} grains. The average weight of an equal number of beans from each stock was nearly as 100 to $\mathbf{7 9}$ in favor of the old stock.
Polsonons Propertles of Labnrnum

The laburnum (L. vulgare), a small ornamental legumi nous tree very common in our gardens under the name of " golden chain," is quite a favorite with both young and old on account of its being an early bloomer, as well as because its fiowers are very pretty.
A writer in the Gardener's Chronicle calls attention to the fact that the seeds of this plant act so violently as an emetic that they are justly deemed poisonous, 'ut it seems very little known that all the parts of this tree-leaves, fiower pods, and even the bark and roots-arehighly dangerous and conin the cytisin discovered by Husemann and Marne in 1864. A dose of 0.03 of a gramme injected under the skin is sufficient to cause the in stantaneous death of a dog or a cat. Dr. Christison was the first who observed the fatal poisoning of a man by cytisin, and more than a hundred cases of poisoning by this alkaloid, of which the ma jority were fatal, have jorily were fatal, have
been recorded in medical been recorded in medical
literature. Children particularly, who had eaten of the pods or seeds of laburnum (ten seeds kill a child), but also adults who by mistake had taken flowers of this plant in stead of false acacia to prepare a tea, were dangerously affected. The symptoms of this kind o poisoning are not at al characteristic, and unfor tunately no antidote is as yet known for it.

Japanese Cement.

Mix the best powdered rice with a little cold water, then gradually add boiling water until a proper consistence is ac quired, being careful to keep it well stirred all the time lastly, it must be boiled for one minute in a clean saucepan. This glue is beautifully white and almost transparent, for which reason it is well adapted for fancy paper work, which requires a strong and colorless cement.

The Steamship scotia

Many of our people, from having frequently crossed the Atlantic in the stcanship Scotia, the last side-wheel steamer built for the Cunard Company, will be glad to know what has become of their favorite vessel. A foreign contemporary gives the following account of her:
"Few would recognize in the large twin screw steamer which left the Mersey lately, the once famous Cunard liner Scotia, the last of the great paddle steamers built for the Atlantic trade, and which, under the command of the late Captain Judkins, was for years looked upon as the fastest and favorite vessel on the line between Liverpool and New York. The Scotia was built in 1s62, when, with the excep tion of the Great Eastern, she was probably the larges mail steamer afloat, being about 400 feet long over all, 47 feet 8 inches beam, and 4,050 tons builder's measurement, and fitted with a pair of side lever engines of 1,000 horse power The introduction of screw steamers fitted with compound engines for the Atlantic and other occan voyages has, of late ycars, en tirely superseded the paddle stcamers, and a few years back the Scotia was withdrawn from the Cunard Company's sailing list, and was subsequently purchased by the Telegraph Construction and Maintenance Company to be employed in their cable-laying operations. Extensive alterations were made by Messrs. Laird Brothers, at Birkenhead Ironworks. The Scotia has been stripped of her masts, fun nels, machincry, paddle wheels and paddle boxcs, deckhouses, etc.; she has also been raised by the addition of a spar deck, and al tered about the after end to prepare her fo twin screws, and has been fitted with new compound engines, and also provided with thrce immense cylindrical tanks in which to stow the electric cable, as well as with mos elaborate and approved steam machincry for paying out and hauling in, also steam capstan, stcam stcering gear, winches, etc. Thc new engines are two distinct sets, on the compound system, with inverted cylinders, 38 inches, and 66 inches diameter, and 3 fect 9 inches stroke, supplied with stean at 75 lb . pressure from three doublc-ended cylindrical boilcrs, and are calculated to drive the vessel at a speed o about $11 \frac{1}{2}$ knots an hour.

THE ELECTRIC PEN.

Our engraving, which we take from Lu Nature, represcnts a new clectric pen devised by Messrs. Bellet \& Hallez d’Arros, who deserve credit for having remedied several imperfections which existed in the first instruments made on this principle.
This pen was suggested by the familiar experiment of piercing a eard by the passage of an electric spark from a Leyden jar. The spark of an electric machine or an inducthon coil passing between metallic points or between a point and a conducting body is capable of piercing a card and will, of course, muc casier puncture a sheet of paper. When the sheet of paper rests upon a metallic plate and the surface is tra versed by the electric pen versed by the electric pen the plate and the pen being connected with the poles an induction coil, a line may
be produced by a serics of be produced by a serics of
very fine perforations, which very fine pcrforations, which
will vary in number in a given space with the rapidity of the disclarges and the rate of the movement of the pen. The principle of the pen is very simple, but before the practi cal utilization of it was reached, many difficultics had to be surmounted. Among thesc we may mention th tendency of the sparks to burst forth, when the pen is within a short distance of the paper, puncturing the pape in all directions, making it impossible to draw a clea line from the start. The operator was also liable to severe shocks. Another difficulty was the distance between the successive perforations. These imperfections havebeenovercome by Messrs Bellet \& Arros, by reducing the strength of the secondary current, so that it has only sulficient power to pierce the paper, and will not, therefore. give a perceptible shock. The paper which is to form the stencil is dipped in a solution of salt and dried; this operation prevents too many sparks from issuing from the pen, and insures an absolutely truc and clear line. The interrupter is of novel form and is operated by the magnetized core of the induction coil. The apoaratus forms a desk of me
dium dimensions. At one side of the desk there is a plung ing bichromate battery; the induction coil is placed in the middle and is connected by one of its wires with the lead of an ordinary lead pencil, which serves the double purpose of making a visible mark on the paper and of conducting the current. Themetallicplate which supports the paper is also connected with the coil and is secured to the desk top. When t is desired to take an impression from the stencil it is placed over a sheet of paper, and rolled with printer's ink reduced with a little printer's varnish or with castor oil.

\triangle FEW SOUNDER.

The accompanying illustration represents a sounder for

NEW AGRICULTURAL INVENTIONS.

An improvement in the class of churns having a recipro cating dasher which is operated by a spring motor, has heen patented by Mr. W. L. Allegru, of Hebbardsville, Ky. This mprovement relates to the construction of the churn cover which is composed of two separate disks, the lower on being designed for gathering the butter
An improved churn dasher, constructed so as to give the milk a continuous rotary motion as the dasher is moved up and down, his been patented by Mr. Seth K. Warren, of Louis ville, Ky . The invention consists in wings eccentricall pivoted to arms attached to the dasher handle
A cultivator that is constructed so that its teeth may be evated or depresscd at will, so that it may be bauled drawn over the road on its own wheels, ha been patented by Mr. Wm. Jones, of Mil Point, N. Y. It will cultivate or make a furrow close to a fence or hedge

An improved machine for stacking and ricking hay and straw has been patented by Mr. B. E. Joncs, of Boonville, Mo. The in vention consists in a combination of devices which cannot be readily described without an e!ıgraving.

Mr. A. W. Meyer, of Labaddic. Mo., has devised an improved straw elevator fo thrashers and separators, which consists in the combination of a fan blower, a pivoted screcn leld in a horizontal position by a weighted arm, and a conductor spout, with a stacke having cross slots in its floor
An improved sulky scraper, constructed so that it may be readily adjusted to the various positions required tor collecting, carrying and dumping the load by the driver from his scat, has been patented by Mr. William C. Marr, of Onawa, La
Mr. James M. Matthews, of Knoxville Tenn., has patented an improved plow, which has a semicircular iron beam upon which the mould board is made adjustable.
Mr. Sam. T. Ferguson, of Minncapolis Minn., has patented an improvement in horse rakes, which consists in a yielding or flexible lever, which may be held by the hand of the driver, and which may be readily chanced to
dred have been constructed for the telegraph lincs in a rigid lock leverwhich will hold the teeth of the rake to the India.
It differs from an ordinary sounder in the arrangement of the armature, which is supported by a vertical spiral spring. This spring serves to restore the position of the armature when the current ceases, as well as to relieve the lower bearing of nearly all friction. The prolongation of the armature acts as the beam, and plays between the two stop shown in the engraving
To insure very good insulation for damp climates, the coils are rendereal solif? ly repeated immersions in a compound of are rendereal solid! ly repeated immersions in a compound of resin and beeswax (for hot climates, ten parts of resin and a rigid lock lever which will hold the
ground without the aid of the driver.

The Fur on the Tongue.

The nature of the fur on the tongue has been the subject of a study by Henry T. Butlin, F.R.C.S., and the results of his investigation are given in a paper read at a recent meet ing of the Royal Society. The author finds that tongue fu consists chiclly of (1) débris of food and bubbles of mucu and salivia, (2) epithelium, (3) masses which at first appear to and salivia, (2) epithelium, (3) masses which at first appear to consist of granular matter, but which arc the gloa of certain
forms of schistomyctous fungi. In order to ascertain the true nature of the glea, and to obtain it in a purer form it was cultivated upon a warm stage. Several fungi were discovered, but only two of these were present in every instance, Micrococcus and Ba cillus subtilis, and as the gloca producedartificially was similar to that existing naturally in the tongue fur, it is be lieved the fur is composed essentially of these two fungi. Micrococcus developed frecly and abundantly, forming large nasses of yellow or brownish ycllow color. Bacillus did ot develop, but existed in greater or less alumelance in all the cases examined. It appeared to be identical witl the Leptothrix buccalis de scribed by Robin. Although it did not develop under artificial conditions, it is pro bable that development takes place frecly upon the surface of the tonguc. Its habitual occurrence there, and the pre sence of spore-bearing fila ments, favor this view. Be sides these fungi there wer present in more orlere wer dance, Bacterium termo, Sur cina ventriculi, Spirochata pli catilis, and a larger form of Spirillum or Vibrio. The first

NEW ELECTRIC PEN.

. cnt is shown by its working without fresh adjust ment, either with one Daniell's cell through 6,000 ohms or with 20 through 0 . When very delicatcly adjusted, one Daniell's cell through 31,000 ohms is just able to work the instrument if the stops be extremely close together G. Dubern, in Journal of the Society of Telegraph Engi- neers.
of these fungi existed in sume of the furs, and twice doeloped with great rapidity. The second was frcyuentily resent, and generally deveh brown color. The spirochuet asses of a yellow or yellowis bithe ccurred in only two or three The slime between and around the teeth was found to con sist of the same fungi as the tongue fur, but the rods of Bacillus were longer, probably owing to fewer disturbances.

