the krupp electric lant.

Herr von Krupp, of Essen, has receutly patented an in vention for "Improvements in Electric Light Apparatus. The main object of the invention is to regulate automatical ly the position of the carbons of an electric lamp "in a simpler manner than heretofore, without abandoning the generally acknowledged conditions on which the precision of motion of the single parts depends." The invention includes the application of a brake appliance for the automa tic regulation of the distance between the two carbon points. A fan or fly revolves in quicksilver, or other liquid, for the purpose of regulating the motion of the carbon holder, this part of the apparatus being designed as a substitute for clock work. A magnetic coil with iron casing and iron bottom is employed in connection with the motion of the brake appliance.
Fig. 1, in the engraving, which we take from Engineering is a side elevation, and Fig. 2 a front elevation of the lamp, in which A is the holder for the upper positive carbon, and B the holder for the lower negative carbon. The upper holder, A, is suspended from the disk or pulley, C, by means of a jointed chain or wire, the lower holder, B, being similarly attached to a disk or pulley, D, the latter disk being just balf the size of the former. The chains or wires are so passed round the pulleys that when the holder, A , descends a certain distance by its weight, the other holder, B, ascends to half the distance. Accordingly the electric arc formed between the carbon points occupies a fixed position. As the weight of the upper holder, A, must not be too small, because its motion would then be easily influenced by dust and dirt, it is neces. sary to have an appliance for retarding and regulating its course or travel. For this purpose a fly or fan, E , is applied, which revolves in mercury or other liquid. On the spindle of this fly there is a pinion, F, which gears with a tooth whecl, G, on the spindle, X , of the chain pulleys, C and D . In order that the fly, E , by the insertion of a fresh carbon should not have to revolve backward, the toothed wheel, G, is fitted with a pawl whecl, H.
The setting and regulating of the proper distance between the carbon points is effected in the following manner: On the sanie spindle, X, as the pulleys, C and D, and tooth wheel, G, there is a disk, I, as shown in the separate view, Fig. 3. Fig. 4 is a separate view of a brake of a peculiar form acting on this disk, I. The brake consists of two parts, K and M, which are jointed together at L . The lower part, M , can turn on the spindle, X , and has a bole, M^{1}, in which is inserted a small peg, N, Figs. 1 and 2. The peg, N, has much play in the hole, and the backward motion of the brake is limited thereby. \mathbf{O} is a brake block on the upper part, K, of the brake; P is the keeper for an electro-magnetic coil, Q. This keeper is by a brass rod suspended from the other end of the part, K
When the lamp is in action the keeper, P , is drawn into the coil, Q , whereby the brake block, 0 is pressed against the disk, I, turning the latter in its further movement downward, that is, so far as the set screw, R, Fig. 1, will allow. Thus, the upper carbon point will be raised, and the lower carbon point lowered, and the electric arc then makes its appearance. The carbon points now gradually consume away, the current becomes weaker, and its effect on the electro-magnet, \mathbf{Q}, is lessened. The brake, K , supported by the spring, S-the action of which can be suitably regulated in proportion to the strength of the current by meansof the lever, U , andset screw, V -and by the weight of the carbon holder, moves slowly back. The brake disk. I , is thereby enabled to turn forward, and the carbon points can approach each other. When this movement has proceeded as far as the brake disk, I, moved back before, then the lower part of the brake comes to bear against the peg, N . By the further weakening of the current, the brake will now turn in its joint at L, the brake block, \mathbf{O}, releases the disk, I , and the carbon points move toward each other, whereby the current is strengthened and hold it when the carbon points are in their right position, or to pull it back when the carbon points are too close together When inserting new carbons, the brake is fixed by the se
screw, W, and the work is arrested thereby. The electro magnetic coil, \mathbf{Q}, rests on the bed plate, T, of the lamp, and is surrounded by an iron casing, whereby its power of at raction for the keeper is increased.
The fixed position of the arc provides for keeping the light in the center of a concave reflector. Where this is not re quired, the lamp may be simplified by leaving out the moving parts for the lower carbon holder, making it fixed instead of movable. The lamp thus devised has been employed by Herr von Krupp in portions of his great factory at Essen, in Germany, and the results have been so satisfactory that he light is being extended to other parts of the establish ment
oll Wells and their Products.
Recent statistics show that there are now 10,882 wells pro-
ducing oil in the State of Pennsylvania, and they pour out

KRUPP'S ELECTRIC LAMP.
chestnut. This patient had not walked for nearly two years and had gone through the whole list of rheumatic remedies. While treating a horse with the infusion of horsechestnut be found the swelling to rapidly disap ${ }_{i}$ jear from his hands. H hen applied the remedy to other joints, and reccived the ame benefit. This is certainly an improvement on the prac ice of carrying a horsechestnut in one's pocket as a prophy lactic of the same complaint.

Ancient Memphis.

A traveler in the East gives the following interesting ac count of his visit to the remaius of ancient Memphis, founded by the first known Egyptian king-Mencs. " But what did we see of this wonderful city? Only a succession of mounds" says the writer; "a few pieces of ancient statues; ud far down below the present level, with its face in the water, a magniticent figure of a woman in Egyptian dress, with noble features and finely-modeled form, almost perfect, although proba bly 4,000 years old. As a matter of course, we lingered and looked as long as we thought sentiment required, then pushed on to the remarkable ruins of the cemetery, which was connected with this city, or I should say, magnificcut city of the dead-to the very con fincs of which Memphis extended. It is now but a little more than a vast mountain of sand, being just on the precincts of the African desert. There are so many tombs every where peeping out, and so large a number of pyra mids-eighty-one in all, scattered about -that the interest is kcenly excited a once; and at every step some new devclopments take place. When we re member that old Memphis was seven teen miles in circuit, and was occupicd with villas, gardens, and sacred groves, we can realize more than in any other way the wondrousness of the scene which remains to us to day. After passing the largest pyramid, considered the oldest monument of antiquity in the world, we descended rapidly to the one little house of refuge standing in the midst of the sand, dismounted and lunched-thus securing a good resting scason, and after about an hour, started out with our guides to the two special points of interest here, the Mauso leum of the Sacred Bull, aud the tomb of the Priest Tih, the latter built about 3050 B. C. These were uncovered in 1860 by the Egyp tian authorities, who, first noticing mounds in the sand bearing the ap pearance of heads, appointed a com mission, and after a labor of sixtee monthe, avenue of sures, month fect long, was laid open, the pedestal or statues being perfect in all cases This was paved and led to the Mauso lcum of the Sacred Bull, where these objects of worship had been entombed for several dynastics. There were found three scparate chambers of tem ples, the latest wherc dates were found -650 B.C.-being the only one now open. Onc canuot help fecling an interest in every detail of such a place There are the long avenues, broad and high, hewn in the solid rock, while all along the sides are deep recesses where are now standing the sarcophagi of the bulls. Twenty-five perfect ones stand in one archive, cach weighing forty tons, and many of them fully engraved with figures, representing life, death and immortality. But it is no mor wonderful to see them where they ar than to understand how they were put therc. One which was presented to the French had been abandoned when moved some little distance, as too heavy to be taken away. They are thirtecn fce long, eleven feet high, avd seven feet deep, and, although many of the cov ers have been removed, nothing was nothing was altogether about 50,000 barrels of oil daily. The product found in any of them. Above the sarcophagi are inscrip this spriug has been 25 per cent greater than last year and tions relating to their burial, and in whose reign they died bout three times as great as the yield three years ago. One Many tablets were found upon the walls, which werc placed housand eight hundred and eleven new wells were opened there as offcrings to the god; these, however, were all allowed	during the past year, and there appears to be no danger of	to be taken to Paris."

exhaustion of the supply. This vast product adds immensely the country's industries, and the transportation of it affords large revenues to the carriers.

Infusion of Forsechestnut in Rheumatism.
Dr. W. S. Drake reports in the St. Louis Medical and Sur gical Journal that he had an inveterate case of chronic rheu matism cured by the patient bathing in an infusion of horse-

A Tribute to Cyrus H. McCormick

The Academy of Sciences of the French Institute have elected Mr. Cyrus H. McCormick as correspondent of the Academy in the Department of Rural Economy. This is a recognition of his services in the invention and manufacture of harvesting machinery, and his official connection with the recent Exhibition at Paris.

