THE CHAMELEON.

This singular reptile has long been famous for its power of changing color, a property, however, which has been greatly exaggerated, as will be presently seen. Nearly all the lizards are constitutionally torpid, though some of them are gifted with great rapidity of movement during certain seasons of the year. The chameleon, however, carries this sluggishness to an extreme, its only change being from total immobility to the slightest imaginable degree of activity. No one ever saw a chameleon even walk, as we understand that word, while running is a feat that no chameleon ever dreamed of.
When it moves along the branch upon which it is clinging the reptile first raises one foot very slowly indeed, and will sometimes remain foot in air for a considerable time, as if it had gone to sleep in the interim. It then puts the foot as slowly forward, and takes a good grasp of the branch. Having satisfied itself that it is firmly secured, it leisurely unwinds its tail, which has been tightly twisted round the branch, shifts it a little forward, coils it round again, and then rests for a while. With the same elaborate precaution, each foot is successively lifted and advanced, so that the forward movements seem but little faster than the hour hand of a watch.
The food of the chameleon consists of insects, mostly flies, but, like many other reptiles, the chameleon is able to live for some months without taking food at all. This capacity for fasting, together with the singular manner in which the reptile takes its prey, gave rise to the absurd fable that the chameleon lived only upon air. To judge by external appearance, there never was an animal less fitted than the chameleon for capturing the winged and active flies. But when we come to examine its structure we find that it is even better fitted for this purpose than many of the more active insect-eating lizards.
The tongue is the instrument by which the fly is captured, being darted out with such singular velocitythatit is hardly perceptible, and a fly seems to leap jnto the mouth of the reptile as if attracted by magnetism. This member is very muscular, and is furnished at the tip with a kind of viscid secretion which causes the fly to adhere to it. A lady who kept a chameleon for some time, told me that her pet died, and when they came to examine it they found that its tongue had in some strange way got down its throat, an accident which they took to be the cause of its death. Its mouth is well furnished with teeth, which are set firmly into its jaw, and enable it to bruise the insects after getting them into its mouth by means of the tongue.
The eyes have a most singularappearance, and are worked quite independently of each other, one rolling backward while the other is directed forward or upward. There is not the least spark of expression in the eye of the chameleon, which looks about as intellectual as a green pea with a dot of ink upon it.
Owing to the exceeding slowness of its movements, it has no way of escaping when once discovered.

Great numbers of these creatures fall victims to enemies of every kind, and were it not that their color assimilates so well with the foliage on which they dwell, and their movements are so slow as to give no aid to the searching eye of their foes, the race would soon be extinct. The chameleon has an odd habit of puffing out its body for some unexplained reason, and inflating itself until it swells to nearly twice its usual size. In this curious state it will remain for several hours, sometimes allowing itself to collapse a little, and then reinflating its skin until it becomes as tense as a drum and looks as hollow as a balloon.
The chameleon is readily tamed, if such a word can be applied to the imperturbable nonchalance with which it behaves under every change of circumstance. It can be handled without danger, and although its teeth are strong, will not attempt to bite the hand that holds it. It is, however, rather quarrelsome with its own kind, and the only excitement under which it has been seen to labor is when it takes to fighting with a neighbor. Not that even then it hurries itself particularly or does much harm to its opponent, the combatants contenting themselves with knocking their tails together in a grave and systematic manner. A few words on the change of color will not be out of

THE CHAMELEON
produce the different effects. The young of the chameleon are produced from eggs, which are very spherical, white in color, and covered with a chalky and very porous shell. They are placed on the ground under leaves, and there left to hatch by the heat of the sun and the warmth produced by the decomposition of the leaves. The two sexes can be distinguished from each other by the shape of the tail, which in the male is thick and swollen at the base.
There are nearly twenty species of chameleons known to zoologists at the present day, all presenting some peculiarity of form or structure.

Hibernation of the Cotton Worm Moth.

After reviewing all the facts and evidence on the subject of the hibernation of the cotton worm, and showing that it cannot and does not survive in either the egg, larva, or the chrysalis state, Prof. C. V. Riley, in the paper recently read by him before the National Academy of Science, considers its hibernation in the parent moth state. The power of migration is proved and admitted, and the Professor has known of large fields of melons being ruined by the moth, whose proboscis enables it to puncture the rind, as far north as Racine, Wisconsin. "It is but natural, therefore," he
ontinues, "to conclude that the insect comes each year from some country where the cotton plant is perennial, an here are other facts which lead to this view, first put forth in 1854 by Dr. W. J. Burnett, in the Proceedings of the Boston Society of Natural History, and subsequently re peated by Prof. A. R. Grote, before the American Associa tion for the Advancement of Science, in 1874." Prof. Riley goes on to show, however, that the conclusion is probably erroneous, and ends his paper as follows:

My own belief now, is that the moth really survives the winter in the more southern portions of the cotton belt, as on the Sea Islands of Georgia, and in parts of Florida and Texas, and that it is from this more southern portion that it spreads this year.
" This belief, which yet lacks full confirmation, does not preclude the occasional coming of the moth from foreign preclude the occasional coming of the core countries, or the possibility of its being brough by favorable winds from such ex terior regions; though the fact is established that it could not have come from the Bahamas since 1866.
"The question has an important practical bearing, for, on the theory of the insect's ability to remain with us, much important fall and winter work of a preventive nature may be done in destroying the moths whereas, on the theory of its annua perishing and necessarily coming from foreign countries, no such preventive measures are left to the planter. The time employed in baiting and destroying the las brood of moths in autumn will be wasted and he must helplessly await the coming of the parent the ensuing spring, and deal as best he can with the progeny.'

Sharks, Sucker Fish, and Pilo

 Fish.Professor H. N. Moseley, in his "Notes by a Naturalist on the Challenger," says:

While dredging was proceeding off the Islaud of Sombrero, on the approach to St. Thomas, two shark (Carcharias brachiurus) were caugh with a hook and line. One of thes had the greater portion of one of it pectoral fins bitten off, there being a clean semicircular cut surface where the jaws of another shark had closed and nipped it through.
Attached to the sharks were se veral "sucker fish" (Echineis remo $r a$), as commonly is the case. Some times these " suckers" drop off as the sharkishauled on board. Some times they remain adherent and are secured with their companion. In this case four out of six "suckers" were obtained with the two sharks, They were seen to shift their posi tion on the sharks frequently as these struggled in the water fast hooked. The remora is a fish pro vided, as a means of attachment, with an oval sucker divided into series of vacuum chambers by trans verse plaits. The sucker is placed on the back of the fish's head. The animal thus constantly applies its back to the surfaces to which it at taches itself, such as the shark's skin. Hence the back being always less exposed to light is light colored, whereas the belly, which is constantly undermost and exposed, is of a dark chocolate color. The familiar distribution of color existing in most other fish is thu reversed. No doubt the object of this arrangement is to render the fish less conspicuous on the brown back of the shark. Were its belly light-colored as usual, the adherent fish would be visible from a great distance against the dark background. The result is that when the tish is seen alive it is difficult to persuade one's self at first that the sucker is not on the animal's belly, and that the dark exposed surface is not its back. The form of the fish, which has the back flattened and the belly raised and rounded, strengthens the illusion.
When the fish is preserved in spirits the color becomes of uniform chocolate, and this curious effect is lost.
When one of these fish, a foot in length, has it wet sucker appled to a table and is allowed time to lay hold, it adheres so tightly that it is impossible to pull it off by a fair vertical strain
Fishing for sharks was a constant sport on board the ship when a halt was made to dredge anywhere within a hundred miles or so of land, in the tropics. Sharks were not met ith in mid ocean.
Mr. Murray examined these sharks thus caught, and reports that they all, whether obtained in the Atlantic or Paci-
fic Occan, belonged to one widely distributed specics, ex cepting one other kind obtained off the coasts of Japan The hammer-headed shark (Zygena malleus) was taken by us -nly with a nct on the coasts.
The sharks were often seen attended by one or more pilot fish (Naucrates $s p$. .), as well as bearing the "suckers' attached to them.

I often watched with astonishment from the deck this curious association of three so widely different fish as it glided round the ship like a single compound organism. The sharks, as a rule, were not by any means se easily caught as I had expected. Frequently they were shy and would not take a bait near the ship, though they never failed to bite if it was floated some distance astern by means of a wooden float. It is always worth while for naturalists te take what sharks they can at sea, since their stomachs may contain rare cuttle fish which may not be precured by any -ther means.
The sharks caught were always suspended ever the screw well of the ship. It was amusing, on the first occasion on which one was get on board, sprawling and lashing about on the deck, te see twe spaniels belonging te efficers on board, put their bristles up and growl, ready te fly at the fish. The dogs would probably have lost their heads in its mouth if not driven back. Sometimes the sbarks were bold enough and would bite at a bit of perk hung ever the ship's side on the regulation shark hooks, which is supplied te ships in the navy, and which is an iron crook as thick as one's little finger, and mounted on a heavy chain.
No shark was hooked during the veyage which was large en ough torequire such a hook. Nearlyall the sharks caught and seen were verysmall, from five to seven feet in length. The largest oltained was, I think, one netted at San Jag \bullet Cape Verde Island, which was four feet in length. Large sharks seem scarce. I was disappointed, and had expected to meet with much larger enes on se long a veyage. The lirgest shark known seems to be Carcharodon rondelettii, of Australia. There are in the British Muscum the jaws of a specimen of this species which was thirty-six feet and a half in length (Gunther's "Catalogue of Fishes.") The Challenger dredged in the Pacific Occan in deep water numerous tecth of what must be an immensely large species of this genus.

The great basking shark (Selache maxima), a harmless beast with very minute teeth, ranging from the Arctic seas to the coast of Portugal, has been known to attain a length of more than thirty fect. Sharks eccasionally seize the patent lo.gs, which, being of bright brass and constantly towed, twirling behind ships, ne doubt appear to them like spinning baits intended for their use.
The pilot fish often mistakes a ship for a large shark, and swims for days just before the bows, which it takes for the shark's snout. After a time the fish becomes wiser and departs, uo doubt thinking it has got hold of a very slupid shark, and hungrily wondering why its large companion dees not scize some food and drop it somc morsels. The "suck crs" often make the same mistake and cling to a ship for days when they have lest their shark. I fancy that porpoises and whales, when they accompany a ship for several days, think they are attending a large whale. A humpback whale followed the Challeager for several days in the South Pacitic.

RECENT MECHANICAL INVENTIONS.

Messrs. Michacl Furst and William Chadwick, of Brook lyn, N. Y., have patented an improved machinc for spin ning hemp yarn. The improvement relates more particu larly to the condenser of hemp spinning machinery, and to devices for rubbing the sliver and pelishing the yarn.
An impreved lathe dog, previded with a movable or ad justable arm or carricr to adapt it to held objects at points more or less remote from the center, has been patented by Mr. B. F. Cloud, of Philadelphia, Pa.
Mr. J. D. Russell, of Lebanon, Me., has patented an improvement in tire tighteners, which is operated by means of a cam and lifting bar. se as to expand the felly and make reom for leather washers at the end of the spoke.
An imprevement in bench vises has been patented by Mr. Thomas Gremmit, of Reckford, Ill. It is constructed se that it may be readily adjusted for different kinds of work, and for holding work of different shapes.

A Life Saving Bow.

Secing that wrecks very frequently occur within two or three hundred yards of shore, a correspondent suggests that an efficient aid to the life saving service in such cases might be found in a bow light enough to be carried in the hand and strong enough to throw an arrow with a light line to a ship in distress, or frem a ship te the shore. A cord 3-16 of
an inch in diameter would suffice to haul off a line strong enough te carry a cable, and much valuable time might thus be saved. T•drag a heavy gun a mile or twe along a sandy beach, with other heavy apparatus, involves more labor and loss of time than can well be afforded by the short crews of -ur life saving stations, especially when the wreck is nea the shore and in danger of breaking up.
A bow carrying a light life line might be useful alse at bathing stations, as at Long Branch, where accidents happen very near the shore. The cost would be small, and there would be no expense attending the practice required to make the beach attendants familiar with the use of the bow and line.

A NEW WINGED PROJECTILE.

The accompanying cut represents a new winged prejectile designed by Mr. E. S. Hunt, of Boston. The Massachusetts Humane Seciety have recently adepted it, and have such faith in its efficiency that they have presented a gun and projectile te the Reyal National Life Beat Institution, England, høping that the authorities will consider its merits.
Twe smeoth bore brass guns, mere toys to look at, weigh ing 56 lb . and 69 lb . respectively, each 24 in . long, were used to fire the projectile, the charge of powder varying from $31 / 2$ oz. te $41 / 2$ oz. The prejectile, the nevel feature of the invention, weighed, when filled ready for firing, $121 / 2 \mathrm{lb}$. In form it is an elongated sbell carrying a line tightly coiled
within, which it pays out without the smallest risk of breaking as it travels through the air. It is placed in the gun, a it were, the wrong or heavy shot end first, and on leaving the muzzle, at once reverses, the front end becoming the

hunt's winged projectile.

rear end, the projectile, after this reversal, maintaining, in consequence of the four wings, and on the principle of the arrow, an accurate and distant range.
In construction the prøjectile is a tin tube 20 in . long, $31 / 4$ in. in diameter, having fixed or hinged wings at one end, and a leaden shot weighing 6 lb . at the other. Within the tube is a compact coil of linc $171 / 2 \mathrm{in}$. long, and the diam eter of the tube. This line is from 200 te 400 yards in ength, with a breaking strain of from 250 lb . to 400 lb . The shot is attached to the second or shore coil lying alongide the gun, se arranged that on the shock of the discharge be line runs out freely from both coils.
During a recent trial at Mr . Hunt's range, 2211°, an eleva tion which has been found by continued practice best suited oo throw the line over any wreck with the smallest strain to it and the projectile, the distances obtained and measured on the official range course were 389,448 , and 507 yards, the deviation of the shot and line from the target being $4_{3}^{2}, 9$, and 8 yards respectively. Three shots fired at 30° and 35° clevation, traversing a line of flight some 400 ft , in the air ranged 478,489 , and 386 yards, with deviations of the shot and line from the target of 2,6 , and 6 yards respectivcly.

THE WRITING TELEGRAPH.

Prof. A. E. Dollie:ar, Tufts College, Mass., communicates the following description of his writing tclegraph to the Ner England Sournal of Ellucation.
When a current of clectricity is sent through ahollow coil

PROF. DOLBEAR'S WRITING TELEGRAPH.

of wire the latter is made a magnet, and will attract inte it short red of iron. If the helix be held vertical, the red of
iron may be supported in the air without touching anything. hrough the strength of the attraction. If the iron rod be placed end to end of the coil, it will be attracted inte it with force proportional to the strength of the current of elec tricity in the coil. I have utilized this in making a galvanemeter, the iron red or core being supported by a spiral spring the distance the core is drawn inte the spiral is the measure in weight of the strength of the electrical cur rent. This same device is alse empl-yed in the receiving instrument
the writing telegraph (see 1 in the diagram). the writing telegraph (see 1 in the diag:am).
Let a be a hollow coil of wire, and b the core of soft iro
held in place by a spiral spring within the helix. At p is a marker attached by a light red to the end of b, se that any movement made by b toward c, the bottom of the helix, would cause p to make a straight line in the same direction. Now let a current of electricity enter the helix by the wire, l, and at \bullet nce b will m॰ve int the coil a certain distance; a stronger current would make it to move still further in, and a weaker one would allow the spring to push it back again; the marker then would make a straight line. At a^{\prime} and b^{\prime} is ane marker then would make a straight line. At a^{\prime} and b is
ane, precisely like the one described; they are at right anglest each other, and their common junction is at p, se that any motion made at b^{\prime} will make p record the direction. When these two act conjointly, the place that p will have will depend solely upon the distance cach of the cores, b and b^{\prime}, is drawn inte its helix, and when the helices an turn upon pivots at c and c^{\prime} it is plain that the point, p may take any position inside the space indicated by the dot. ted lines; that is, any kind of a figure may be drawn by p inside those limits. This instrument is called the receiver. The transmitter (see 2 in diagram) is a separate instrument, and unlike the receiver. At r is a narrewstrip of weod hav ing a greove in it, in which s may slide. On one side of the groove are a series of wire terminals of the battery, \mathbf{B}. The end, s, of the slide is metallic, and it is inconnection with the wire, l; and when it is thrust a little way int the groove it touches one of the wire terminals of the battery and permits a current of electricity to flow int the wire, l, and so through helix, a drawing b in and causing p to make a short mark If s is thrust inte r still further, a stronger current is thrown on the line, l, and se on the further it is down the groove At p^{\prime} is a marker corresponding to the marker in the receiver, so it will be understood that p will duplicate the motion of p^{0}. In like manner as in the receiver, there is a second part in the transmitter, at right angles to the first, and its slide, s^{\prime}, is in connection with the marker, p^{\prime}, and with the termi nals of the battery, B^{\prime}, se a current over the linc, l^{\prime}, will move b^{\prime} in the receiver. The other terminals of the batterles, G and G^{\prime}, are in the carth. It is evident that p^{\prime} may be at any point within the limits of movement of r and r^{\prime}, and alse that any new position will vary the current on one or both lines, l and l^{\prime}; hence any movement of p^{\prime} will be duplicated by p. For writing a strip of paper inoved by clockwork un der the point, p, will give a facsimile of what is written at p^{\prime}. A prefile or pertrait, or indeed any lxind of marking whatever, at p^{\prime}, will be duplicated by the receiver. The ar rangement for varying the current from the battery, B, con sists of a series of coils of wire having different resistances s shewn at $m m$.
The main part of this invention was made by me some years age, and it is alluded to in the book on " The Telephone and Phonograph," by George B. Prescott (p. 261). Λ device quite similar to this has lately been invented and described by Mr. Cowper, of England. His recciver, however, consists of twe electre-magnets at right angles to each other and the varying current acts so as te twist a light needle very much as in a common galvanometer. This transmitter is identical with mine. My instrument was made and shown to a geod many persens when Cewper's was first made pub lic here.

The Regeneration of the Eye.

Galignani's Messenger reports some curious experiments lately undertaken by M. Philipeaux, te discever whether on completely emptying the eyes of young rabbits and guinca pigs, the vitreous humor would be reorganized, and whether even the crystalline would be repreduced. With this view he has been conducting his operations, always, of course taking care not to touch the crystalline capsule, for experi ence has shown that in order that an organ shall regenerate a portion of it must be left in its place. It seems that a month after the mutilation was effected, the experimentalist was able to state that the eyes, which had been emptied, werc filled afresh, and that the crystalline was recensti tuted. He eperated on 24 animals, and in each case the matilated cye revived. This would seem to show that the eptic organ has the same capabilities as the benes; the organic precess repairs an evil and reconstructs, more or less com pletely, that portion which has been struck off from the whole. How far similar results are obtainable with the hu man eye does not appear. If the same regenerating power is found to be general, a decided imprevement may be pessible in the treatment of certain injuries and diseases of the eye.

Close Work.

A very pretty piece of enginecring was successfully completed early in May in cennection with the Baltimore Water Works Tunnel, by the resident engineer, Mr. O. C. Swann It was the union of twe headings between shafts 3 and 4 the most of which was done by Thes. McCabe, contractor Shaft N•. 3 was 276 feet deep, and shaft Ne. 4, 300 feet, be ing the two deepest on the wholc tunnel. The distance apart was 2,100 fect. The center line was se exact, says the Baltimore Grazette, that it struck a plumb line. In the level there was ne apparent difference whatever, and measurement varied only one inch between the surface and the tunnel measurement. The entire tunnel, to be $63 / 4$ miles in length, will be finished in about a year. The tunnel commences at the Great Gunpowder river and runs perfectly straight, with an internal diameter of 12 feet, to Lake Montebelle, the re ceiving reservoir. There are 15 shafts along the length \bullet it, varying frem 2,000 te 3,000 feet apart and frem 50 te 300 feet deep.

