New American Industries.

The Grocer, in summing up the new sources of wealth in this country, and alluding to the anxiety of foreign producers at our rapid strides in producing nearly all the most important staples formerly imported, says that six years ago cream of tartar was imported from France to the extent of $6,000,000 \mathrm{lb}$. yearly, but so successfully has the manufacture of it in this country been carried on, that last year not a single pound was imported. Notwithstanding that the crude materials have at present to be imported, the price of the manufactured article has been reduced from 32 cents per pound, the rate for the French article here, to 23 and 24 cents per pound for the Amcrican production. France and England formerly sent us annually $500,000 \mathrm{lb}$. of tartaric acid, while the importation for the last fiscal year was 183 lb. England formerly monopolized our market for citric acid to the extent of $250,000 \mathrm{lb}$. annually and at the rate of $\$ 1.30$ per pound, while ast year $27,018 \mathrm{lb}$. were imported and sold at the same price as the American article, 57 cents per pound. At present the lime juice from which citric acid is made has to be imported, but it could easily be produced from fruits grown in Florida, if only sufficient energy were put into the work. If the lemon and lime growers of the South can be induced to prepare the lime juice, the entire production and man:.facture of citric acid will be kept in this country, saving hundreds of thousands of dollars annually and developing another great industry. Borax was formerly brought from England at the rate of from 600,000 to 1,000,000 ll . every year. Owing to the development of borax mines in Nevada, this importation has largely fallen off, and the report for the last fisscal year showed only $3,492 \mathrm{lb}$., and the price of the refined article, which is now prepared in this city, is only 8 to 9 cents per pound, when formerly it was 35 cents per pound, England being now among the buyers where she was the principal seller, both of the crude and refined product.
The production of fruit sirups has heretofore been entirely in the hands of the French. 'The long time required to transfer these goods from France to South America and the West Indies, where they are largely used, and the natural advantages of the country, induced our New York merchants to enter into compctition with the European markets for the production of fruit sirups. The experiment has proved successful, and sirups of a far richer flavor have been produced much cheaper and have mot with approval in the tropics. The success of the experiment bids fair to bring to the United States a large trade, and retain in the United States millions of dollars that has previously gone to other nations.

IMPROVED SNOW FLANGER.

We give herewith an engraving of an improved apparatus recently patented by Mr. David M. Cox, of Pine Bush, N.Y., for removing snow from the inner side of the track rail to make way for the flanges of the car wheels. This device, although quite simple, is said to be very effective. We are informed that it has been subjected to a practical test during the past winter, which has demonstrated its utility to the satisfaction of the railroad that has adopted it, as well as to the inventor.
The beam, A , of the car truck is mortised to receive the scrapers, B, which are slotted at their upper ends and held in place by a pin. The upper ends of the scrapers are pressed by the springs, C. The scrapers are flexible, and their lower ends are provided with a projection that extends nearly to the flange of the rail.
As the car progresses the snow is thrown outside of the track, and the path of the wheel flanges is readily cleared. The scraper being flexible yields to any rigid obstruction. The device may be applicd to one or more of the trucks on the train, and it operates when the car is drawn in either direction
Instead of using the slotted scraper the one shown in the foreground having a T-shaped head may be employed, but its action would be the same as that already described.

A Large Meteorite Found.

About 5 o'clock in the afternoon of May 10, a large meteor was seen to fall at the edge of a ravine near Estherville, Emmett county, Iowa, malsing a hole 12 feet in diameter and Iowa, malsing a hole 12 feet in diameter and about 6 feet decp. S. E. Bemis writes to the Chicago Tribure that search
parties had found numerous pieces, varying in size from 1 to parties had found numerous pieces, varying in size from 1 to
8 ounces, also four picces about 4 lb ., and one weighing 3 ? 8 ounces, also four picces about 4 lb ., and one weighing 3 ?
lb. and 2 ounces; but the largest size was found bedded 8 lb . and 2 ounces; but the largest size was found bedded 8
feet in blue clay, and fully 14 fect from the surface. Its weight is 431 lb ., and its size 2 feet long by $11 / 2$ wide, and one or so foot thick, with ragged or uneven surface. It is composed, apparently, of nearly pure metal, a piece of which has been made into a ring. It makes a very pretty ring, resembling silver somewhat, but a trifle darker in color.

Not Pleuro-Pneumouia

Professor Williams, of the New Veterinary College, Gay field, Edinburgh, Scotland, has decided that the American cattle slaughtered at Liverpool were not suffering from contagious pleuro pneumonia, as the veterinary officers of the Privy Council asscrted. The lungs of such cattle having been submitted to him for examination, Professor Williams
says that in none of them were there any of the signs of contagious pleuro-pneumonia, but all presented evidences of capillary bronchitis and collapses of certan lobules of the lungs of recent origin. In none of the lungs were there any traces of pneumonia or of pleuritis. He is of the opinion that the disease oriminated during transit. He adds that the above mentioned portions of lungs have been examined by Dr. Hamilton, Pathologist to the Royal Infirmary and Demonstrator of Morbid Anatomy; Dr. Young, Professor of Physiology; Mr. Vaughan, Professor of Anatomy; Mr. Kit chen, Professor of Materia Medica and Therapeutics, all of the New Veterinary College of Edinburgh, and others, al of whom agree with him as to the nature of the disease and are ready to indorse his opinion.

NEW SAMPLE CASE

The accompanying engraving shows an improved case for ampling, holding, or conveying goods of various kinds. It

DAVIS' SAMPLE CASE.

seems especially adapted to the use of millers and others deal ing in grain or flour.
It consists of a sheet metal tube having near each end in dented grooves, that in reverse form ribs or shoulders on the inside of the tube, which serve as seats for the stoppers. The stoppers are of sufficient thickness to reach from the rib to the end of the tube, and are retained in place by lips formed at the end of the tube, which are bent down after the package is filled
The tube is provided with one or more partitions or dia phragms of cork or other suitable material, which divide the package into two or more compartments, so that two or more different samples may be carrica. The stoppers at the end

COX'S SNOW FLANGER
of the package are provided with handles to facilitate their emoval.
This improved sample package was recently patented by Mr. M. R. Davis, of Jackson, Mich., from whom further in formation may be obtained.

Growth of the Petroleum Business in the Pennsyl vania Oil Fields from June, 187%, to April, 1879. The amount of crude petroleum produced in the month of June, 1872, was 506,130 barrels. The amount of crude oil held in stock at that time in the producing regions was $1,010,302$ barrels. The number of producing wells in June, 1872, was 4,144 . The average daily production per well was 39-10 barrels. The sales of crude on board of cars in June, 1872 , were from $\$ 3.80$ to $\$ 4.10$ per barrel.
The amount of crude produced in the month of A pril, 879, was $1,507,950$ barrels. The amount of crude held in tock at that time was $6,666,611$ barrels. The number of producing wells in April, 1879, was 10,782. The average Tarborough, N. C
daily production per well was 46.10 barrels. The sales of crude oil certificates in Junc, 1872, were from $733 / 4$ cents to 81ヶ cents per barrel.
From the alove exhibit the following results appear

1. That the production of the Pennsyivania oil fields has ncreased about 200 per cent. 2. That the stock of crude held in the producing region has increased over 600 per cent. 3. That the number of producing wells has in creased about 160 per cent. 4. That the daily average pro duction per well has increased 0.7 per cent. 5. That the average price of crude in Λ pril, 1879, was nearly 300 per cent less than in June, 1872.
From the above results the deduction of over production is inevitable.-Stowell's Petroleum Reporter.

RECENT AMERICAN PATENTS.

Messrs. D. M. Hurlburt and C. R. Slocum, of Hornells ville, N. Y., have patented an improved umbrella drip cup, which consists in a collar with a flexible rim and having at tached to it a flexible bag. The drippings run into the flar ing portion of the collar and from thence into the flexible bag.
Messrs. Joseph Conly and Jonas B. Wise, of Sharon, Wis. have patented an improved refrigerating building for the preservation of fresh meat and other substances to be kept cool. It consists in a peculiar arrangement of double walls, partitions, slides, etc., which cannot be clearly described without an engraving.
A horn tobacco box, consisting of two similar section connected by flanges and rivets, and provided-with a sliding cover, has been patented by Mr. Hermann Arnold, of Eliza beth, N. J.

A novel toy wind wheel, consisting of a spring lammer, corrugated bell or gong, and a metallic wind wheel, attached to a handle and arranged so that the rotation of the whee will ring the gong, has been patented by Mr. Joseph L. M Du Four, of Bound Brook, N. J
Mr. Frank Donaldson, of New York city, has invented an improved device to be inserted in or attached to house doors for convenience of those supplying and those receiving milk. The device holds the pitcher and the money or ticket, indicates the amount of milk required, and has a small locked door which can be opened only by the milkman, who carrics a funnel adapted to the apparatus, which he inserts through the door when he desires to fill the pitcher.
In improved edging tool for lathe working has been pat ented by Mr. Genas B. Putnam, of Thomaston, Me. The invention consists in a flat cutting blade fitted to a handle and carrying an adjustable gauge arm, to which is attached a gauge plate that acts as a guide for the knife.
An improved means for attaching urns to stoves has been patented by Mr. Cornelius Fuller, of Somerset, Mass. I consists in a horizontally bent arm hinged to one side of the stove by a vertical pin. This arm has an eye through which passes the stem portion of the urn.
Messrs. D. W. and H. Johns and Henry Embs, of New Albany, Ind., have patented an improved machine for mak ing ax-polls. In this machine the ax-polls are made by the rolling process, the iron bar be ing first bent into a V-shape and the eyc formed; the ends or flanges are then closed by stationary dies as the poll comes from the roll.

An improved apparatus for utilizing waste gases of distillation in refining petroleum has been patented by Mr. Henry E. Parson, of New York city. This invention is designed to utilize the gases that are formed in the pro cess of distilling petroleum after the oilleaves the condensing coil.

An improved clothes pounder, patented by Mr. William D. Middleton, of Elkhart, Ind. consists in the combination with a conical dasher of a perforated cylinder, a piston, and a spring, arranged so that air is forced through the clothes and through the water facilitating the cleansing of the clothes.

In picking cotton long sacks are used which are dragged on the ground by the pick ers. When filled these sacks drag heavily and are worn out rapidly. Λn improved cotton sack protector, which may be easily at tached to or removed from the sack, and which will obviate the difficulty re ferred to, has been patented by Mr. David W. Bullock, of

Mr. James S. Brady, of Clintondale, N. Y., has patented an improvement in dampers for stoves and furnaces, by which the draught is controlled automatically. The invention depends for its action on the expansion of the stove and pipe by an increase of heat.
Mr. Theodore Beckerman, of Henry, Ill., has recently patented a windmill which has several novel features. The spokes of the wheel and the rods and stays are made of gas pipe to secure strength, lightuess, and durability. The hub is of cast iron and the sails are of sheet, iron or wood. It is pro vided with an effective automatic governing device, consist ing of a weighted lever and connections, by means of which the sails may be kept full in a moderate wind and turned more or less under a varying wind pressure, so that a uni form speed will be maintained under all working conditions The peculiar construction of the mill admits of the use of large sails without necessarily using heavy working parts.

The Hygrometric Propert es of Glycerine. A writer in the Pharmaceu'ica' Journal gives the following curious and interesting facts in regard to the behavior of glycerine in a very moist atmosphere: The moisture in the form of water collects and floats on its surface, aud taking glycerine (probably more than half its own weight) attracts more moisture, which in turn exercises its solvent power and acquires a capability of still further absorption. Thus the action goes on, not necessarily, as may be thought, in a constantly decreasing ratio as the water increases in amount, but at an almost uniform rate from week to week. The mixture of glycerine and water is not so actively hygrometric as the glycerine alone, but the combination once effected the action continues with singular uniformity.
The author (Mr. W. Willmott) then proceeds to illustrite this by means of a table, from which he shows that although during a period of four weeks there is an increase of weigit from week to week, jet there is a diminution of the increase during the second and following weeks as compared with the first; and this is owing to a lessening of the intensity of absorption by the presence of the water. All this goes on with out stirring or disturbing the fluids in any way. If, however the water be kept stirred into the glycerine instead of being allowed to remain on its surface, there will be no appreciable difference in this increase of weight between the first and following weeks. But at what point is there a pause in this process? Where docs it end?
In whatever proportionate quantity water may be added to glycerine, from a single drop upward, absorption will take place in a moisture-laden atmosphere until the proportion reaches three parts by measure of the former to one of the latter. At this point the glycerine, so to speak, gives up the
contest and succumbs to the influence which the water excontest and succumbs to the influence which the water exc:ts in the opposite direction. In this mixture, therefore, namely, three fluid ounces of water to one of glycerine, there will be neither attraction nor evaporation, the weight scarcely varying from week to week cither in one direction or the other. If now we conduct our experiments in a moderately dry atmosphere-say in the atmosphere of an ordinary room in which a fire is kept burning during the day-the action will be the same, but to obtain similar results the proportions will be widely different, and in fact almost reversed. Instead of three parts of water to one of glycerine, we shall require nearly three parts of glycerine to one of water to reach the neutral point. Where in one case there is absorption and augmentation, in the other there is evaporation and consequent loss.
It is to this hygroscopic character of glycerine and its power to absorb moisture that is due its irritating effect when rubbed on the skin in an undiluted state.

Medical Colleges-Doctors.

Barnes' Educational Monthly takes to task our medical col leges and the medical profession generally, for the imperfect manner in which the former are conducted and the lack of scientific knowledge among the latter.
While we do not indorse the sweeping assertions of the writer, that a large proportion of our doctors are incompe tent to prescribe in ordinary diseases, we have no doubt but many reforms might be introduced into our medical colleges, and that our practitioners would become more skillful in their profession if they studicd more into the causes of the disease they are called upon to treat; in other words, as the writer says, conduct their practice on more scientific principles.
With the exception of one college in New York, and two in other States, says the above named monthly, any one may -become a medical student without preliminary examinations in anything, moral character not excepted. Students are often graduated at the close of two years' study, and in some and imperfect. Examinations for diplomas are not at all rigid, a knowledge even of chemical analysis not being re quired. There is not a single doctor in one of the counties in Western New York who can conduct a decent chemical analysis, or even tell whether his nitrate of bismuth does or does not contain arsenic. A doctor recently stated on examination that the proper dose of prussic acid for a child two years old was from four to six drops! As a general thing, doctors in rural places, and in some of our cities as well, stick to antiquated remedies and outrageous doses. We think our educational journals ought to stir up the young doctors to more diligent habits as students. Each one of them should have his chemical laboratory, where he daily
such chemical analyses as sickness demands.
such chemical analyses as sickness demands.
If doctors were a little more enterprising a
If doctors were a little more enterprising and pushing, we should know something more concerning such diseases as typhoid fever, diphtheria, scarlet fever, and measles. Call two doctors in succession to a child attacked with one of these diseases, and the probabilities are they will give you contradictory explanations, and totally different remedies. This is no recommendation to the medical profession. Be cause doctors are not scientific, the practice of medicine is not conducted on scientific principles, and medicine is no
to-day a science. It is a practice, we admit, much to the horror of sensitive tastes. The day will be hailed with joy horror of sensitive tastes. The day will be hailed with joy
by a disease-cursed world when this practice is conducted by a disease-cursed world when this practice is conducted
on scientific principles. We laymen would like to know many things our medical advisers will not tell us, simply because they cannot.

Let us have some light on those diseases lurking unsubLet us have some light on those diseases lurking unsub- M. Jourdeit, of France, has recently patented a process for
dued in all parts of our land. It is your duty to enlighten \mid obtaining from these stems a material suitable for the manu
the world, and if you are the students you should be, some
of you will bless this humanity of ours by telling exactly what will cure certain diseases, and why it will do so. You should be paid to prevent as well as cure. We would rather give you twenty-five dollars to keep us well, than ten to cure us when sick.

Milk and Lime Water in Nervous Disorders.
In a paper on "Milk with Lime Water as Food and Medi cine in Nervous Disorders," presented by E. N. Chapman to the Medical Society of the State of New York, at its re cent annual mecting, the author deprecates the warfare of drugs against disease which is now being waged by special ists more vigorously and systematically than ever before. Digestion and assimilation, he asserts, are ignored, and the attention is absorbed by oue or more prominent symptoms in a part retnote from the primary source of morbid action Consequently the efforts
He states that having used, the last few years, milk with lime water almost exclusively as the diet of his patients, he has attained a success unknown to him when he depended more on medicine and less on food. To illustrate the ready assimilation, the nutritive quality and the remedial power of
milk, when rendered digestible by lime, he presented notes of a number of cases treated by him, embracing a class in volving the nerve centers, and that are acknowledged to be little under the command of accepted modes of treatment, such, for instance, as marasmus, anæmia, paralysis, indiges tion, neuralgia, chorea, dementia, and alcoholism.
In concluding his paper, Dr. Chapman remarks that the efficacy of milk with lime water in the illustrative cases brought forward by him is equally observable in others when ever, either primarily or secondarily, the nutritive functions are much at fault. The milk (with a pinch of salt) being rendered very acceptable to the stomach by the lime, may almost al ways with advantage be made the prime article of diet in the sick room, however diverse the conditions. It is the most digestible and at the same time the most nourishing food that can be given. It allays gastric and intestinal irri tability, offers a duly prepared chyle to the absorbents, supplies the blood with all the elements of nutrition, institutes healthful tissue changes, stimulates the secreting andexcret ing glands, and, in a word, provides nature with the material required to sustain herself in her contest with disease. If it be conceded that nature always accomplishes the cure when ever it is secured, and that drugs merely aid, direct, or modify her efforts to this end, it will be self-cvident that the food which supplies the vital forces with all the power of rethat milk acted upon by lime, provided it contains all the essential properties of other articles epitomized, and is more friendly than any or all of them, has a range of application almost as extensive as the disease itself, whatever its charac ter and whoever the patient.

Electric Light in Hydraulic mining.
The first electric light ever introducca in a mining claim was placed on the Deer Creek placer claim of the Excelsior Water Company at Smartsville, on the 10th of last April. A 12,000 candle power Brush machine was put in operation, and three lights of 3,000 candle power cach were placed in prominent positions upon the claim. Although the night was very dark the lights shed a brilliant light around and enabled the miners to work as readily as during the day. Until
this experiment the mines had to shut down during the night, this experiment the mines had to shut down during the night,
but now the company expects to work both night and day but now the company expects to work both night and day.
Nevada and Yuba countics have many hydraulic mining Nevada and Yuba counties have many hydraulic mining
companies, and several of them have announced their desire to use the new light if the Excelsior company is thorouglly satisfice with their machinc. As Mr. Law has received several telegrams from the company which state that it is working well, there can be no doubt that it will be adopted. The three lights cost the company about 10 cents per hour, and with interest, wear and tear, etc., included, the claim is lighted for 16 cents per hour. The company's daily cleanup is from $\$ 500$ to $\$ 1,000$, and by running nights also the yield of the mine can be doubled. - Vevada Transcript.

Sea. Weeds for the Herbarium.

The recipe for pressing sea weeds for preservation used by the Rev. A. B. Hervey, of Troy, N. Y., well known as an expert in that process, is as follows: Float out each specimen by itself in salt water, in a white dish, like a washbowl. Put the paper under the plant in the water, arrange the plant on the paper and carefully draw it out. Lay the paper with the plant upon it on drying paper and spread over it a piece of white muslin. Then spread over this a layer of drying
paper, then more plants, and then more cloth, drying paper, etc. Put all under a board, and weight it with forty or fifty pounds of stone or other heavy substances. The next day change the cloths and drying paper, and in one day more the plants will be dry and ready to go into the herbarium or the album for permanent preservation.

Utilization or Hop Stems.

Many attempts have been made to convert hop stems, which, at the present time, are only a nuisance to the hop growers, into some useful product; paper makers have tric to reduce them to a pulp suitable for their purpose, but with only indifferent success. The Brewer's' Guardian states that
facture of cordage. The stems and runners are collected twenty-four hours after the hops have been picked, tied together in bundles about five feet in length by half a yard in diameter, and steeped in water in the same mauner as hemp. Here they are allowed to remain from three to four wecks, after which they arc taken out, placed on end to drain for a while, dried for twenty-four hours in the sun, and then stored in dry, well-ventilated sheds. The separation of the fibers from the woody portions of the steeped stems is read ily effected by passing these between two cylindrical rollers, ily effected by passing these between two cylindrical rollers,
though the process is not quite so easy as in the case of though the process is not quite so easy as in the case of
hemp or flax, owing to their tougher structure. The fibers, as thus obtained, are of a light brown color, and from 12 to 16 inches long. They are then carded in the same manner as flax, and in this state afford a very valuable material for the manufacture of cordage and similar rough products. Another patent has been taken out in Gcrmany, according to the Gardener's Chronicle, and which differs from the above. In the German process the hop stems are boiled in soan oda, and water well washed, ade reboled in very dilute acetic acid, again washed, dried, and combed, when they are fit for use, and can be washed like flax.

Another New Metal.

The services the spectroscope is capable of renderiug to science become more and more evident daily, the latest proof of the fact being the discovery of a new metal called scandium. In some of the mines in Sweden and Norway small quantities of earthy minerals arc found, called gadolinite aut quantities of earthy minerals arc found, called gadolinite aul euxenite, composed of oxides of very rare metals. The bulk
of the substance is of a rose color, arising from the presence of the substance is of a rose color, arising from the presence
of erbium, and is called erbine. At first it was supposed to be simply mixed with some earthy substances which rendered impure, but not long ago M. Marignac discovered the pres nce of another metallic substance, which he called ytter bine, the oxide of ytterbium. However, great uncertainty existed as to the composition of these bodies, and M. Nilson undertook a series of experiments on the subject. M. Berthelot, at the last meeting of the Academy of Sciences, gave an account of what had been done so far, the result being the discovery of a new metal to which M. Nilson has given the name of scandium, to indicate that it is of Scandinavian name of scandium, to indicate that it is of Scandinavian
origin. Erbine is, as before mentioned, of a brilliant rose origin. Erbine is, as before mentioned, of a brilliant rose
color, while ytterbine is white. But the separation of the two substances can only be effected with extreme difficulty The earth has to be dissolved in boiling nitric acid, and the ytterbine then precipitated by sulphuric acid; and M. Nilson found that the operation, repeated more than twenty times, did not completely separate the two bodics.
When he had obtained a comparatively pure ytterbinc he commenced an examination of $i t$, and then he found that it gave absorption bands in the spectrum unknown to any substance previously examined. After repeated trials he became convinced that he was dealing with a metal never before sus pected, and he continued his researches. He is unable to say at present what may be the chemical properties of the new body, as the quantity of material at his disposal was insufticient to allow him to isolate the metal. Nor can he decide as yet as to the place the new metal is to take among the older ones, but he considers that its propertics differ matcrially from those of erbium and ytterbium, and that it should rank between tin and thorium, as the atomic weights of these two are 118 and 234, while he calculates that of scandium at from 160 to 180.

Brain Work and Skull Growth

The London Medical Record sums up as follows the results of some very interesting measurements of heads by two French physicians, Messrs. Lacassagne and Cliquct:
Having the patients, doctors, attendants, and officers of the Val de Grace at their disposal, they measured the heads of 190 doctors of medicine, 133 soldiers who had reccived an elementary instruction, 90 soldiers who could neither read or write, and 91 soldiers who were prisoners. The instrument used was the same which hatters cmploy in measuring he heads of their customers; it is called the conformator and gives a very correct idea of the proportions and dimen sions of the heads in question. The results were in favor of the doctors; the frontal diameter was also much more considerable than that of the soldiers, etc. Nor are both halves of the head symmetrically developed: in students, the left frontal region is more developed than the right; in illiterate frontal region is more developed than the right; in illiterate individuals, the right occipital region is larger than the left.
The authors have derived the following conclusions from The authors have derived the following conclusions from
their experiments: 1. The heads of students who have their experiments: 1. The heads of students who have
worked much with their brains are much more developed worked much with their brains are much more developed
than those of illiterate individuals, or such as have allowed heir brains to remain inactive. 2. In students the frontal region is more devcloped than the occipital region, or, if there should be any difference in favor of the latter, it is very small; while in illiterate people the latter region is the largest.

Mademoiselle Adelaide Montgolfier, a daughter of the inventor of balloons, is still alive, aged eighty-ninc years. She is possessed of alarge fortune, and presented the Muscun of the Aeronautical Academy with a copy of the large medal cxecuted by Hondon, and representing her father and uncle,
who was associated with him in the invention of balloons. who was associated with him in the invention of balloons.
This medal was executed to commemorate that event. A movement will be got up in France for celebrating the cen enary of that memorable event, which took place in June, 1783, in the vicinity of Lyons.

