Srimtifir Ammiram.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. B' PARK ROW, NEW YORK.
o. D. MUNN.
A. е. веАса.

TERMS FOR THE SCIENTIFIC AMERICAN.

 One copy one year, postage included.One cops,
six months, postage included

The Scientific American Supplement

s a distinct paper from the SCIEvTIFIC AmERICAN. THE SUPPLEMENT
is issued weekil. Every number contains 16 octa is issued weeklis. Every number contains 16 octavopages, with handsome
cover uniform in size with Scievtricic AMERICAN. Terms of subscription cover, uniform in size with SCIENTIFIC AMERICAN. Terms of subscription
for SUPPLEMENT, $\% .00$ a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country. Combineal Rates.-The ScIE vTrFic American and Supliembnt
will be sent for one year. postage free, on receipt of seven dollars. Both will be sent for one year, postage free, on receipt of seven dollars. Bot
papers to one address or different addresses. as desired.
The safest way to remit is by draft, postal order, or registered letter Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition.

The Scientific ammrican Export Edition is a large and splendid pe

 odical, issued once a month. Eich numberr containg about one hundredarge quarto pages, profusely illustrated. embracing
(1.) Most of the plates and pages of the four preceding weekly issues of the scIENTIFIC American with its splendid engravings and valuable information:
 world. Single copies 50 cents. Manu facturers and others who desire to secure foreign trade may have large, and handsomely dis
nouncements published in this edition at a very moderate cost.
The SCIEMTIFIC AMEMIICAN Export Edition has a large guaranteed circulation in all commercial place
CO., 37 Park Row, New York.

VOL. XL., No. 23. [New Series.] Thirty-fifth Year. NEW Y•RK, SATURDAY, JUNE 7, 1879.

TABLE OF CONTENTS OF THE SCIENTIFIC AMERICAN SUPPLEMENT
 NO. 179

For the Week ending June 7, 1879
I. ENGiNEering and mechanics.-H. M. S. Comus. The frst of
the six steel corvettes built at Glasgow for the British Navy. 1 illus. the six steel corvettes built at Glasgow for the British Navy. 1 illus.
A Light Draught Stern Wheel Steam Yacht. Detail drawiags of the A Light Draught Stern Wheel Steam Yacht. Detail drawings of the
fast river yacht, built at Rock Istand, Ill., for government use, and de scribed in SUPPLEMENT No. 172.3 figures. Table of measurements.
Watt's Single-Acting Simple and Compound Engines. 6 illustration of small and light engines for steam launches, torpedo boats, and simi lar uses.
War Ma
700 lb . shells. 1 illustration Woolwich Arsenal, England. The ico lb . shells. 1 illustration. The $\begin{aligned} & \text { Anishing of Palliser shells. } \\ & \text { End of the Age of Brass. The discarding of locomotive or }\end{aligned}$ Economy of plain engines.
Standard Meters. By Prof. J. E. Hildard. Bronze, iron, and pla-
inum standards and their behavior. The International Bureau Weights an 1 Measures.
Locomotive Electric. Light. Description of an English portable elec ric light apparatus. 1 illustration.
II. TECHNOLOGY.-Iron and Steel at the Paris Exhibition. New uses of iron. Allotropy of metals. SchutzenDerger's investi. ations. Cool ing hot journals. Von Heren's method.
III. ELECTRICITY, LIGHT, ETC.-Electricity in air. Electrifled dust. A Mirror Bar
1 illustration.
The Japanèse Magic Mirror. Professor Ayrton's explanation of it magic quality. Friday evening discourse at the British Royal Institute, London, January 24.1 illustration
Newtonian Telescope for Amateurs.
Newtonian Telescope for Amateurs. How to mak
yet powerful and accurate instrument. 1 illustration
IV. ARCHITECTURE AND SANITARY ENGINEERING.-An English Eastern counties, 1 il:ustration.
Common Defects in House Drains. By Eliot C. Clariee, C. E.. en gineer in ch trge of sewerage work, Boston, Massachusetts. An ex
ceptionally valuable paper, from the 11th annual report of the State ceptionally valuable paper, from the 11th annual report of the State
Board of Health, 34 fgures, showing a great variet of defects in house drains and sewer connections, and the necessity of thorough and inte digent sanitary supervision of house drainage.
V. NatUral history.-Plant and Animal Life. By A. R. Grote,
A. M., 7 illustrations. Relations of life and structure. The development of life. Protoplasm, bathybius, protomoba. Multiplication o fresh water amoebo. Growth of the red snow. Bryopis. Growth of
engloona agilis. Egg of the dog in different stages. Life inseparable from motion, and motion the result of material relationships.
On the Queen Bee, with Especial Referencetc the Fertilization of he Eggs. By John HUNTER. The nature and development of the queen
bee. The impregnation of the queen bee. A dificult problem solved.
In sect Powder. Superiority of Dalmatian to Persian'powder. Effec pyrethrum powder upon house flies, aphis, etc.
Chrystalogenesis. Investigations of M. Lecoq de boisbaddran.

THE TRAJECTORY OF MOLECULES

In "The Fourth State of Matter," Scientific American January 25 , last, an account was given of the experiment made by Mr. William Crookes, showing the high probability of a fourth state of matter, more ethereal than the gaseous, in which matter take on an entirely new set of properties. At a social meeting of the British Royal Society, April 30, Mr. Crookes exhibited a series of experiments illustrating still further the curious behavior of electrified molecules in xtremely rare media.
By the improvements made in the Sprengel pump by Mr C. H. Gimingham it is now possible to produce vacua in which the pressure is measured in millionths of an atmo sphere. It is with vacua so produced, in the more perfect of which the pressure is as low as one millionth of an atmo sphere, that Mr. Crookes' investigations were conducted.
It will be remembered that the discoveries in question wer made in the dark space around the negative pole within a yacuum tube and separating it from the luminous glow This dark space was found to be a region of molecular activ ity similar to that in front of the vanes of a radiometer, by which activity the negative pole, when free to move, is set in motion.
The phenomena exhibited in his first published experi-ments-the phosphorescent effects produced by molecular impact, the illumination of lines of pressure, the casting of molecular shadows, the magnetic deflection of molecular streams, and the like-were shown anew, and supplemented by even more beautiful effects, though nothing absolutely new was developed.
In some of the experiments variously-shaped poles were used, causing the molecular streams to converge to a focus, to diverge, or to move in parallel lines. By one apparatus the four principal phenomena of molecular physics in high vacua-namely, the phosphorescent light of molecular impact, the projection of molecular shadows, the magnetic deflection of the trajectory of molecules, and the mechanical action of molecules projected from the negative pole-were beautifully illustrated.
The vacuum tube inclosed a circular concave negative elec trode, and at its center of curvature a light wheel was pivoted upon a horizontal axis. The wheel was a disk of thin mica, carrying around its periphery a number of equidistant radia vanes of aluminum, making the wheel look like a water wheel. When the tube was placed in connection with an induction coil, the stream of molecules concentrated upon the wheel fell in line with its axis, in which case no motion re sulted. But on bending the stream of molecules up or down by magnetic action the focus of impact would fall above or below the axis, and the wheel would be set to spin ning at a lively rate.
Very brilliant effects were also produced by causing the molecular stream to fall on naturally phosphorescent sub stances, as, for example, diamonds. At such times different sorts of diamonds were distinguished by different colors-
blue, pale blue, orange, red, green, and pale green-African blue, pale blue, orange, red, green, and pale green-African
diamonds emitting a blue phosphorescence. Rubies, on the diamonds emitting a blue phosphorescence. Rubies, on the other hand, whatever their normal tint, all assumed under the
molecular hail the deep "pigeon's blood" red, characteristic of a fine ruby. Even white precipitated alumina gave under the molecular stream the same ruby color, though normally without a trace of color.
Thus far these researches of Mr. Crookes seem to be brilliant rather than instructive in their results; but it is alto gether too early to pronounce upon their possible value.

THE INTERNATIONAL CANAL CONGRESS

An international canal congress, for discussing projects for the construction of an interoceanic ship canal across the American isthmus, met in Paris May 15. M. Ferdinand d Lesseps was fitly chosen president. Since the main object of the convention was to compare routes and decide upon the one to be recommended as a practical enterprise, the principal interest naturally centered in the Committee on Technique.
Up to this writing, May 22, six routes have been under examination and discussion, namely, the Nicaragua route the Panama route, the San Blas route, the Tiati-tolo route, the Tuyra-Caquirri-Atrato route, and the Atrato-Napipi route. At first the Tiati-tolo route, known as Lieutenant Wyse's lockless canal and tunnel route, seemed to have the brightest prospects, from the strong party and personal influeñe known to be working in its favor. The Sub-Committee on Tunnels, however, found that its probable cost had been greatly underrated, and that under the most favorable conditions it would cost $\$ 160,000,000$. This discourag. ing blow was followed by such an able presentation of the impracticability of the scheme by the English engineer, Sir John Hawkshaw, that the project was abandoned.
Already the choice seems to be narrowed to two projects, the Nicaragua route and the Panama route, and

A Medal for Peter Cooper.

At the late meeting of the British Iron and Steel Institute in London, the Bessemer Medal of the institute was pre ented to the venerable Peter Cooper as "the father of the iron trade in America." In his presentation speech the President spoke of Mr. Cooper's half-century connection with the iron trade, his Baltimore rolling mill in 1830, his building and running the first American locomotive, his extensive iron works at Trenton, and especially the founding
view of the fact that it is through the efforts of Mr. Cooper and other leaders in the American iron trade that England greatest rival in iron production has almost reached supre macy, this recognition of his labors by the English iron and steel producers is particularly handsome.

SCIENCE AS A DETECTIVE.

A correspondent tells at greater length than we have space for the story of an attempted fraud which was exposed by chemistry
Anemery wheel guaranteed to stand 600 revolutions was un at the speed, of 1000 revolutions, and burst, doing a large amount of damage. A suit to recover was instituted, based on a letter written by the seller of the wheel, in which the strength of the wheel was rated at 1,600 revolutions. While in the office of the prosecutor endeavoring to effect a settle ment the efendant observed that a certain make of ink wa used, and he learned by a casual inquiry that the same ink was used exclusively by the prosecutor. The defendant had for several years used another ink. Taking samples of the for several years used another ink. Taking samples of the
two inks to a chemist, he was able after analysis to secure a two inks to a chemist, he was able after analysis to se
solvent for the one which would not affect the other.
The case came to trial. Evidence was taken as to the kind of ink each party employed. Then the chemist was called, and in the presence of the jury applied the solvent which removed the interpolated " 1 ," and left the rest of the writing untouched. The proof of the forgery was sufficient and the case was dismissed, leaving the dishonest prose utor to defend himself from a criminal charge.

A NEW REFRIGERATING LIQUID FROM BEETS

In Europe the principal supply of sugar is derived from beets; the annual production of beet sugar being now seve hundred thousand tons. Besides this a large quantity of beet molasses is produced, a portion of which is distilled and a coarse sort of whisky made; the stuff remaining in the re ort yields potassium salts, which are employed as fertilizers Sugar, spirits, and potisll have heretofore been the chief products manufactured from beets. But Mr. Vincent has now succeeded in realizing from the refuse that remains after the beet molasses distillation, a combustible gaseous body which is easily condensed into liquid form, and is called chloride of methyl.
This liquid, obtained as stated from beets, is used in the preparation of some of the aniline colors; but it is now foun to be especially valuable as a refrigerating agent By it rapid evaporation a temperature of $-55^{\circ} \mathrm{C}$., or $67^{\circ} \mathrm{F}$. below zero, may be maintained, which is far below the freezing point of mercury. Prof. Huxley says that by this means mercury (which freezes at $39^{\circ} \mathrm{F}$. below zero) may be frozen by the pound. For the manufacture of ice this new bee root product promises to become of much importance.

MAGNETIC MOTORS.

Is there an available source of encrgy in magnetism There are very many inventors who believe that there is, and very year many attempts are made to produce economica magnetic motors. A short comparison between the force of magnetism and other natural forces will answer our ques tion.
An iron steamship plies between New York and Liverpool it is more or less a magnet under the influence of the earth. Yet the helmsman does not allow for the attraction of the orth or south poles of the earth upon this magnetic matter This attraction is immensely inferior, even if the steamship were made of steel and been magnetized to saturation, to the rift of the tides, or even to the effect of the gentlest breeze. The force of gravitation, however, sinks the heavy vesse deep in the water, and is ready to draw it with all on boar to the very bottom of the ocean. While the force of magnet ism decreases or remains constant when the masses of the at racting magnetic bodies are increased, the attracting force of gravity steadily increases with the masses of the two bodies, between which this attraction acts.
It is sometimes proposed to utilize the magnetism of the earth in magnetic motors by supplying any waste in the en ergy of a permanent magnet from the store in the earth. Let us see how much this force of the earth's magnetism is in comparison with the force of gravity, which is our universal measuring force, so to speak. Suspend in a vertical position from one end a cylindrical bar of iron which is about one foot in length. It should be hung by a very short wire or thread from its north pole. Hang beside it a brass rod of the same dimensions, and provide it with the same length of suspension. Then set the two rods to swinging, and count the number of swings which each makes in a given number of econds. It will be found that the two rods will accomplish very nearly the same number of swings in the same time The rods will differ very little in weight, and their moment of inertia will be very nearly alike. The vertical force o the earth's magnetism, therefore, must be small in compar son with the force of gravitation; for the iron bar is acte upon by both gravity and the earth's magnetism, and yet it vibrates at nearly the same rate as the brass bar. An iron bar, such as we have used in the above experiments, will be rendered feebly magnetic by the earth's magnetism. and could hold a light cambric needle at its extremity; but nothing more. This is the force from the earth which we can count pon to renew the magnetism of steel when it has been de prived of it.
It has been said that it is possible to lower the energy of a magnet by vibrating an armature composed of a thin plat of iron in front of the magnet. An experiment will speedily

