Plantains and Bananas.
Of all plants which are the preduce of the Of all plants which are the preduce of the tropics, none are superior in interest to the plantains and bananas, twe closely allied species of the genus Musa. Of the several species of this genus, one has received the specific name of paradisiaca, under the suppesition that it was the "tree of life," or the "tree of the knowledge of geod and evil," spoken of in the Scriptures. St. Pierre observes that the vielet cone at the end of a branch of plantains,
mas peering through like gleaming cyes, might well have suggested to the guilty imagination of Eve the semblance of a serpent tempting her to pluck the forbidden fruit it bore, as an erect and gelden crest. Theugh some of the species attain a height of 20 to 30 feet, they are herbace \bullet plants, grewing up, flowering, fruiting, and then dying down to give place to other shoots from the same root. The fruit ripens in succession from the base to the apex of the flowering stem, se that on the same plant flowers and ripe fruit will be found asseciated. One stalk of fruit will attain three fect, and bear from 120 t• 150 , even 180 plantains, the entire weight of which would be frem 50 te 70 lb . Dried plantains form an article of internal commerce in India, and, in a few instances, have been experted. When deprived of their skin and dried in the sun, they are reduced to meal, in great request in the West Indies for children and invalids. A recent Frencl exchange states that efforts are being made in Venczuela to get up an export trade formeal of this sort, the supply being much greater than the leme demand. Prefessor Johnston states that the fruit appreaches most nearly in compesition and nutrit the meal to that of rice.
All the species contain a large number of spiral vessels, and afford a strong and valuable fiber, frem which cleth and cordage are made. The substance called manila hemp, much empleyed for cordage in America and Eur•pe, is •b tained from ore of the species (Musa textilis). Scarcely any parts of these useful plants are devoid of use to man. A limpid fluid issues frem wounds in the bedy of the plant, which is used in medicine, as is alse the reet. It has been recently stated in a forcign medical journal that the preperty which these plants possess of keeping the surrounding soil moist (as pointed out by Boussingault) has been taken advantage of to afford shade and moisture to the ceffee plant in Venczucla; and that the cultivation of the latter has therefore been greatly increased.
Still another industrial use has lately been propesed for he fruit in the latter country, this being the distillation of brandy. Banana brandy, even from the first distillation, is said te have a pleasant taste and smell, recalling that of the fruit. It contains 52 per cent of alcohol. As tw hundredweight of the fruit preduces about ten quarts of alcoh \bullet of 06°, banana brandy may yet be destined te play as impertant a part in economy as the alcohol of the sugar cane.

Ramie Fiber and its Manufacture

This fiber, the utilization of which in textile manufactures has for many years engaged the attention of practical men, still continues te cemmand a large amount of notice. It is undoubtedly deserving of all it receives, because if the difficulties that have hitherte stood in the way of its extensive use can be overcome, we shall have at command a tiber that will de much te emancipate manufacturers frem dependence upen the American cotton, the Russian flax, and the Italian and Chinese silk creps. Besides the independent pesition it would take on its © wn merits, it possesses qualities that would enable it te be substituted, by means of a little ingenuity, for any of those fibers. If it can be preduced sufficiently cheap it may even become a permanent substitute for one or more of them, and to a considerable extent displace them. Whether such an eccurrence would be an advantage or etherwise time only could reveal.
During the past menth we have had submitted te eur netice seme specimens of geods manufactured entirely from the rhea plant fiber. The raw material in its dried state, as it is taken in the first precess, was sh๒wn. This is a pliant, reddish brewn, straw-like substance. After passing through the first stage it yiclds a long, light flaxen-colored fiber, of great strength and fineness, and which appears te be divisible te an extreme degree. The next forms in which it was exlibited were in wet spun and dry spun yarns. In the former it possessed a solidity which gives it a somewhat wiry appearance and great strength; in the second it is almost as soft as weol, and may almost be mistaken for it. These yarns wreught inte cleth display similar characteristics. One specimen appears very much like a geod brewn Hessian, and aneth er a Belfast brewn linen. A third had passed through the bleaching process, and showed its capability of being adapted for table linen, napkins, diapers, etc. It bleaches clearly and evenly, coming up of a rich pearly whiteness, with a ceol, pleasant feel, but with more fiber on the face of it than a linen article would pessess. In each phase of it the distinguishing features are great strength and prebabledurability. In another case the tiber had been reduced to its finest condition, spun int• a seft, pearly-white hesicry yarn, and worked inte an undershirt, pessessing all the softness, luster, and beauty -f a similar article in silk
S• far as the samples allowed us te discever. it would ip pear to be free from the distinguishing fault of China grass, from which creases cannot be removed. The inventor stated that he had numerous other fabrics woven from yarns entirely of this fiber, such as dress geods, ribbens, dyed and printed fabrics, cither completed or in precess, and which could be shown when necessary. The specimens exhibited
formed an interesting display, the importance of which, however, depends entirely upen whether, as affirmed, they have been preduced by a process and at a cost that will enable the rhea fiber te take its pesition in commercial markets as a practically useful article.-Textile Manufacturer.

THE EDIBLE MUSSEL.

The common edible mussel, Mytilus edulis, attracts our special attention on account of its value as an article of diet and commerce
In the accompanying engraving, Fig. 1 shows the animal laid open to view, the left half of the triangular shell having been removed, while the brim of the mantle has been thrown back a little te allow a better inspection of the inner organs. Beth parts of the shell are alike in shape and size. The hinge or lock uniting them is located in the smallest

Fig. 1.-EDIBLE MUSSEL.

angle of the triangle formed by the shell, and beth of the lat ter end at this point in short conical elevations. At the oppesite end there is a small \bullet pening in the shell correspending to the anus of the mussel; and in close preximity runs a short fringed tube connecting with the inner organs of respiration.
The peculiar digital form of the foot and the presence \bullet a spinning gland or byssus are characteristic, and both are undoubtedly related to the stationary mode of life of the animal. The hypothenuse of the shell being the face side of the mussel, A is the brim of the mantle of the latter. On beth

Fig. 2.-EDIBLE MUSSEL.-(IIyillus Edulis.)
sides of the møuth, F , will be nøticed the leng, narr•w, folded tentacles, G ; J is the exterior, I the interior respiratory muscle ; E and D are muscles contrelling the feot, B, under and behind the base of which is situated the byssus or spinning gland. From its cavity a groove extends along the lower side of the foet, and ends at its tip in a transverse cavity containing a small plate, perforated by seven small apertures, used for sucking
By means of the foot and the byssean gland the animal is flo enabled to spin a net or barb, C, consisting of numer eus thin threads, attached firmly to the surface of the reck or other - bject forming its abode. These threads are produced from
a viscid liquid substance secreted in the byssean gland, which is sucked up inte the apertures of the end of the foot and drawn out int threads, which become quite firm in a short time. Once attached to a reck or log they resist the action -f the strengest current and the heaviest galc. Fig. 2 is a correct representation of the mussel as attached to a fixed -bject.

If the mytilus desires to change its residence it draws itself forward as far as possible, and attaches a few threads as far ahead as the foot reaches. At the same time a few of the old threads are severed. This manipulation is repeated until a suitable site is reached. Although this mode of locometion is extremely slow, the animal nevertheless manages to tra verse considerable distances in this manner.
The edible mussel inhabits, by preference, those portions of the shore which are laid dry at low tide; and in the neigh borhood of the mouths of rivers, where the percentage salt in the water is low, bread thick bands may be ebserved cevering that particular section and marking it distinctly Semetimes as many as 2,000 individuals have been counted -n an area of ene square $f \bullet e t$.
As abeve mentiøned, the animal prefers water centainin only a little salt. It abounds, therefore, especially in those Eurepean waters cut eff partly frem free communication with the Atlantic, as in the German North Sea, the Baltic and the Adriatic. They have alse been acclimatized in the Caspian Sea, the water of which is not extremely salt.
In northern waters the edible mussel attains its full size in four to five years, and in the Mediterranean in one to tw years. When they propagate each individual preduces (they being hermaphredites) millions of offspring.
Besides being almost indispensable as bait for certain fish they are extensively used as an article of fecl. They are largely cultivated in all Eur甲pean waters, in se-called 'parks.' In the North Sea these consist of large numbers of trees, from which the smaller branches only have been cut, and which are planted in the bottom of the sca at such a distance from the shore that their upper pertion is partially laid bare at low water. After four or five years they are raised, stripped, and replaced by others. In the bay of Kiel, Germany, alone about 1,000 of these trees are annually planted and abou 1,000 tons of mussels are brought on the market. Bad scasons eccur, however, beth with respect te quality and quantity, owing te varieus causes. In the Adriatic the mussels are raised \bullet r repes extended between p\bullet les rammed inte the ground. The repes are raised and stripped once in cighteen menths.

American Sumac.

Dr. William McMurtrie, Chemist of the Department of Agriculture, has been making elaborate investigations as te the relative amount of tannic acid and celoring matter in American and Sicily sumac. He finds the American pre duct, when preperly gathered, te be fully equal to the fe reign. Samples of Winchester, Va., sumac were cellected in the months of June, July, and August respectively. Of these samples those cellected in June and July were mixed varieties, and of the preduct collected in August we secured samples of the leaves of Rhus glabra and Rhus copallina separately.
In reperting his experiments Dr. McMurtrie states that in seme of the tests the precipitates \bullet btained by means \bullet f the selution of the June collections of Winchester mixed sumac were perfectly white and very much cleaner than any -btained with the Sicilian preduct. "The difference in the color of the precipitates obtained from the solution of the June collection and that obtaincd from solutions of the samples of later collections, was sufficiently marked to prove that the great difficulty in the way of the universal employment of the American to the exclusion of the expensive Sicilian preduct may be ebviated by making eur cellections early in the season-that is, in the month of June. The percentage of tannic acid is not, it is true, quite as high as -btains in July, but it compares favorably with the Sicilian preduct, which, be it remembered, communicates a slightly yellowish tinge to the gelatine precipitate. The amount of coloring matter found in the July collection is sufficient to account for the difference of $\$ 50$ a ton in the market values of the sumac of home and foreign growth, regardless of the proportion of tannic acid. We would therefore advise that, for the purpese of tanning white and delicately celored leather, the cellection be made in June, while for tanning dark colored leathers, and for dyeing and calice printing in dark celors, where the slightly yellow coler will hatve ne injurious effect, the cellections be made in July. It appears that for all purpeses the sumac cellected after the 1st of August is inferior in quality. In view of the facts here presented, we cannot help urging upon manufacturers the importance of encouraging the home preduction-of insist ing that the collections be made early in the scason, in order thus te bring about such a change in this matter as te prevent the annual expenditure of over $\$ 600,000$ in gold for the sumac of foreign growth."

NEW AGRICULTURAL INVENTIONS.

An impreved trap attachment for corn cribs, patented by Mr. Adam Harper, of .Beswell, Ind., consists in combining with the raised and slatted bottom of the corn house a series of swinging side racks that rest inwardly on a subjacent floor.
Mr. James W. Rudelph, of Carmi, Ill., has devised an immeved agricultural implement, that is adapted for both hee ing and digging, and is casily adjusted for cither use.

A machine for dropping corn and other seed at regular volume on chronology, written in Latin and published a intervals, and also dropping at the same time a regulated Cologne. supply of fertilizing material into the hill, has been patented by Mr. Geo. W. Miller, of F'awn Grove, Pa.
An improvement in harrows, patented by Mr. George Lettenmyer, of Little Georgetown, W. Va., consists in an ar rangement of yielding teeth, which renders the draught of the implement light, and lessens the chance of breakage. Mr. Henry M. Keller, of Newark, O., has patented an im proved harrow having teeth of peculiar form, and provided with a clod crusher, that breaks up the clods as the harrow advances.

GERARD MERCATOR, THE COSMOGRAPHER

Gerard Mercator, the cosmographer, and inventor of the map projection which bears his name, was born on the 5th of March, 1512, in the small town called Rupelmonde, in East Flanders, about eight miles from Antwerp. He was the youngest of six children of a poor shoemaker. Losing both parents at an early age, he was kindly cared for by a great-uncle, to whom he became indebted for the advantage of an education in the best schools of the Netherlands. At the age of eighteen he entered the University of Louvain, where he was eventually matriculated under the faculty of arts, which nearly corresponded with the faculty of philosophy in a modern German university. Remaining at Louvain till his removal to Germany, he at first devoted himself to philosophical studies of such abstruse subjects as the origin, nature, and destination of the physical universe, and became absorbed in the great problems of science and revelation. He found it impossible to reconcile the Mosaic account of creation with the doctrines of Aristotle. Here he began to tread upon dangerous ground, for in Louvain, as at Paris, the authority of Aristotle in the domain of physical philosophy was sacred and supreme. To dispute or question the perfect consistency and harmony of his teachings with those of the church was heresy. Finding no one to sympathize with himin his doubts, Mercator left Louvain and secluded himself for study at Antwerp for several months; but whatever skeptical views he may have had in regard to the divine inspiration of the Scriptures were caispelled before he returned to Lou vain.
As Mercator grew older he began to turn his attention to the practical problem as to the best means of carning a live lihood. Having obtained permission from the Faculty of Arts of the University of Louvain to give private instruction in mathematics, he thus began to support himself; and having previously chosen for his vocation the manufacture of mathematical instruments, he was thus enabled to establish a workshop of his own, where he manufactured astro lobes, astronomical rings, globes, etc., of great accuracy.
As a chartographer, Mercator appears to have begun his career by the publicatiou of a map of Palestine, at Louvain, in 1537. Increased interest in religious matters naturally led to an increased demand for such maps. No copy of this has
come down to us; but it seems to have been well received, come down to us; but it seems to have been well received,
as it was highly praised by his contemporaries. His next work was a map of Flanders, undertaken at the request of certain Flemish merchants. He traveled over the country, making surveys and measuring heights and distances. It took three years to complete the work, and it was published at Louvain in the year 1540. A masterpiece of his handiwork, at this period of his life, was a large terrestrial globe, which he finished in 1541. This is now lost, but the original
drawings for its exterior surface are still preserved at Brussels. This became the means of commending him to the favor of Charles V., from whom he received an order for a complete set of mathematical instruments for use on his expeditions. About this time he was maimed. In 1544, there occurred in his life an incident which has been only recently brought to light-he was imprisoned as a Brussels, by Mary, queen dowager of Hungary, condemning all heretics to dealh. Under the operation of this edict, fortyall heretics to death. Under the operation of this edict, forty-
three citizens of Louvain, Mercator among the number, were three citizens of Louvain, Mercator among the number, were heresy."
We have no information as to the cause or circum. stances of Mercator's discharge from imprisonment; all is shrouded in mystery; we can only glean from the records of the time that he must have been imprisoned nearly four months. After his release he resided at Louvain seven or eight years. He made a new set of instruments for the and completed and dedicated to the Bishop of Liege a celestial globe of the same size and style as the terrestrial one which he had before presented to Granville
In 1552 he removed to Duisburg, in Germany. Here he shortly after completed for the Emperor an astronomical ring and a set of globes elegantly equipped and ornamented. There was a celestial globe of glass or crystal, and on it were engraved the constellations with a diamond. Inside of this was a terrestrial globe of wood. Attached to this set were a compass, an hour circle, a quadrant of altitudes, and
other instruments. In 1554 Mercator published at Duisburg other instruments. In 1554 Mercator published at Duisburg
a large map of Europe, which, more than any other work of his, contributed to his fame as a chartographer among his contemporaries. This is now lost, although a reduced copy of it published by his son still exists. In 1564 he published a map of Great Britain; in the same year, a map of Lorraine, based on a trigonometric survey made by himself. In 1569 he made his first appearance, after his removal to Duisburg, as the author of a printed book-a folio

Even after the discoveries of the 15 th and 16th centuries, and in the lifetime of Mercator, the works of Ptolemy were still regarded as the groundwork of all geographical know ledge. Mercator was a great admirer, but not animplicit fol lower, of this author, and in 1578 published a corrected and revised edition of the maps orcharts of Agathodæmon which revised edition of the maps orcharts of Agathodæmon which
accompanied the work of Ptolemy. Six years later, he republished this collection of charts, twenty-seven in number, together with the text of Ptolemy's eight books on geogra phy. This work added greatly to the reputation of Merca tor as a geographer and scholar, and is still held in high es timation by modern authorities.
We now come to the work of Mercator commonly known as his Atlas of Modern Geography, and which he did not live to complete. The modern application of the word "atlas" we owe to Mercator, and originated with this work. The introductory pages of the book, which was published by his son after his father's death, contain a genealogical tree of the ancestors and descendants of Atlas of Grecian Mythology, who, as a punishment for leading the Titans in their war against Jupiter, was condemned to bear the heavens upon his shoulders. As Humboldt has adopted the Greek word "Kosmos" as a title to the crowning work of his life, so Mercator adopted "Atlas" as the title to the work which he planned and projected as the crowning work of his life. He did not mean to call it an Atlas, or the Atlas, but simply "Atlas." He never intended to give to it the generic sense in which it is now used, as applicable to any and every collection of maps; but as there was no word in the classical or modern languages that had done such service, the title was
borrowed incourse of time by otherchartographers, until it has gradually lost its special application, and come to designate simply a collection of maps. From the treatment to which two of his works were subjected by the Catholic Church, Mercator has been supposed to have been a Catholic; but this is said to be an error. His posthumous work on the creation was condemned in the Index Expurgatorius because its treatment of the doctrine of original \sin bore ton close a
resemblance to the teachings of Luther; and his chronology was prohibited on account of the extracts contained in it from writings that had been condemned. Mercator, having lost his wife in 1586 , married again. His second wife was the widow of a burgomaster of Duisburg. The issue of his first marriage was six children, three sons and three daughters. He died in December, 1594.

The fame of Gerard Mercator rests chiefly upon his achievements in the department of mathematical geography and chartography. He is known to us, principally, as the inventor of the projection which bears his name. The value of what is now known as the "Mercator Projection" was so little appreciated at first that his successors did not deem it
of sufficient account to place it in the Atlas of Modern Geography. If it ever occurred to the inventor that this rather than any other of his productions would immortalize him, he probably banished the idea long previous to his death. It seems to have been thrown aside and forgotten, or only re-
membered as a scientific curiosity. It is unknown exactly membered as a scientific curiosity. It is unknown exactly
when Mercator's projection was first used; we only know that about the year 1630 , the French seaport Dieppe was the principal emporium for the sale of nautical charts, and that those then sold at that place were mostly on this projection. The practical signification of Mercator's projection is this He says to the mariner: "If you wish to sail from one port to another, here is a chart and a straight line on it, and i you follow this line carefully, you will certainly arrive at your port of destination. The length of the line is not correct, yet it points exactly in the right direction. Consequently, if you follow the line, you may get to your destination sooner than you expect, or you may not get there as soon. But you will certainly get there."
Such are the leading features in the life of one to whom Malte-Brun paid an eloquent and fitting tribute when he said: "Modern geography dates from Mercator." The memory of Mercator has been sadly neglected by the English speaking races, and until the recent paper of Mr. Elial F. Hall before the American Geographical Society, no full account of his life has appeared in our language. We are
indebted to Mr. Hall's paper for the materials of this brief indebted to Mr. Hall's paper for the ma
sketch of the celebrated cosmographer.

DAVID PAGE.

In the death of Professor David Page, LL.D., which oc curred at his residence, Newcastle-on-Tyne, March 9, geology loses one of its most popular expositors and voluminous and practiced writers.

Professor Page was born in Fife, and the earlier years of his life were spent in literary occupations in his native country. Subsequentiy he entered the employ of Messrs W. \& R. Chambers, of Edinburgh, and took an active part in the preparation of their large series of educational works. Durnow half-forgon with this house, the once-celebrated bu pearance. Although Robert Chambers has always been credited with the greater share of this anonymous volume, Page is supposed to have lent powerful assistance with his versatile pen. Leaving the service of the Messrs. Chambers,
he embarked on the sea of successful authorship, he embarked on the sea of successful authorship, and, folgeological science, by his voluminous writings, which wer characterized by a graceful and easy style not usually pos. sessed by scientific men. He rewrote his "Introductory

Text-Book of Geology," and prepared an advanced text book on the same science. He also published works on physical geography, and various popular works on geologi cal subjects. Taking up the study originally as an amateur he ultimately devoted himself to it professionally, although he is not credited with much original power as an observer. In fact, field work for him was almost impossible, owing to physical infirmity, yet he had a most lucid and pleasing way of presenting the discoveries of others before non-scientific readers. On the establishment of the College of Physical Science, at Newcastle, he was chosen Professor of Geology Here he pursued his vocation with much zeal and success until within a short period of his death. He was in the sixty-fifth year of his age.

The New Northwest.

In a long review of the condition, prospects, and possi bilities of the vast and comparatively undeveloped country lying to the north and west of Minneapolis, Minn., the Northwestern Miller says that the Northern Pacific Railroad passes nearly through the center of the finest wheat region on the face of the earth. Nearly 300 miles further north nother great trans-continental railway is being constructed, and our Canadian neighbors even contemplate building a railroad having its northern terminus on the shores of Hud son's Bay. It will thus be seen that to the north and west of Minneapolis is a vast and productive agricultural region extending far up into the British posessions on one side and losing itself in the mountains of Montana on the other It is capable of producing wheat enough to supply the It is capable of producing wheat enough to supply the
world, and the water powers of Minnesota alone are capable of converting the larger part of its product into flour. It of converting the larger part of its product into flour. It
embraces within its limits immense forests of pine and hard embraces within its limits immense forests of pine and hard
wood, and mines of iron, copper, silver, and gold. Nature wood, and mines of iron, copper, silver, and gold. Nature
has provided in abundance the elements necessary to the support of a great population, and the population is now coming.
It is only within the last few years that a systematic effort has been made to develop this valuable section of the na tional domain. The success of the pioneer settlers has been such as to attract the attention of others seeking homes in the West, and the stream of immigration thus started has suddenly swollen to gigantic proportions. Last ycar the set tlers poured into Western Minnesota and Eastern Dakota by thousands; this year they are coming by tens of thousands. As yet only a tithe of the magnificent wheat lands of the western portion of this State are under cultivation, and the sod of the greater part of Dakota's fertile prairie is unbroken. There is a steady exodus from the eastern part of this State and from Wisconsin and other States, of young men and old men, to the " promised land," which, if it docs not literally flow with milk and honey, docs promise an abundant harvest and a competence to those who are willing o work hard and wait patiently
It cannot be doubted, the Miller remarks in another con nection, that this great accession to the wheat growing ter ritory of the United States will have a marked influcnce on the milling industry of the country. With an abundant supply of breadstuffs prices must rule low, and the margins in flour manufacturing be small. Every effort of inventiv skill will be made to cheapen the manufacture and better the product. The inevitable result must be that the making of wheat into flour will be done in large mills employing immense capital, and that the class of small combined mer chant and custom mills will become a thing of the past The present high standing of spring wheat flour, whic many have thought and some have hoped would be lost with the exhaustion of the Minnesota wheat fields, will be main tained through the superabundant supply of the choicest kinds of hard wheat from the new fields now being opened.

Scientific Views of Nature.

Who does not see that Galileo, Descartes, Newton, Lavoi sier, Laplace, have changed the foundation of human thought in modifying totally the idea of the universe and its laws, in substituting for the infantile imaginings of non-scientific ages the notion of an eternal order, in which caprice and particular will have no thought? Have they diminished the universe as some think? For my part I think the contrary The skies as we see them are far superior to that solid vault spangled with shining dots and upborne some leagues above us by pillars which contented the simpler ages. I do not much regret the little spirits that had wont to guide the planets in their orbits; gravitation does the work much bet ter, and if at times I have a sad remembrance of the nine angelic choirs wheeling round the orbs of the seven planet and for the crystal sea that lay at the feet of the Eternal, I console myself with the thought that the infinite into which we look is really infinite, and a thousand times more sublim to eyes of true contemplation than all the azure circles of Angelico of Fiesole. M. Thiers rarely allowed a fine night to pass without gazing upon that boundless sea. "It is my mass," he said. In how far do the chemist's profound views upon the atom surpass the vague notions of matter on which the scholastic philosophy was fed!-Renan.

Clothes Mothe.

To keep furs and woolen goods from moths close wrap ping in paper is enough, though a little camphor may be pu into the package to keep off other insects. Any paper will do if there are no holes in it, and no openings are left for the moth to creep in. Of course care must be taken to have the articles free from moths when put away.

