Plantains and Bananas. are superior in interest the the plantains and bepics, none are superior in interest to the plantains and bananas, twe
closely allied species of the genus Musa. Of the several species of this genus, one has received the specific name of paradisiaca, under the supposition that it was the "tree of life," or the "tree of the knowledge of geod and evil," spoken of in the Scriptures. St. Pierre observes that the vielet cone at the end of a branch of plantains, with the stigmas peering through like gleaming cyes, might well have suggested to the guilty imagination of Eve the semblance of a serpent tempting her to pluck the forbidden fruit it bore, as an erect and golden crest. Theugh some of the species attain a height of 20 to 30 feet, they are herbaceous plants, growing up, flowering, fruiting, and then dying down to give place to other shoots from the same root. The fruit ripens in succession from the base to the apex of the flowering stem, se that on the same plant flowers and ripe fruit will be found asseciated. One stalk of fruit will attain three fect, and bear from 120 t• 150 , even 180 plantains, the entire weight \bullet which w ould be frem $50 \mathrm{t} \bullet 70 \mathrm{lb}$. Dried plantains form an article of internal commerce in India, and, in a few instances, have been experted. When deprived of their skin and dried in the sun, they are reduced to meal, in great request in the West Indies for children and invalids. A recent French exchange states that efforts are being made in Venczuela to get up an export trade for meal of this sort, the supply being much greater than the leme demand. Prefessor Jehnston states that the fruit appreaches most nearly in compesition and nutrit the meal to that of rice.
All the species contain a large number of spiral vessels, and afford a strong and valuable fiber, frem which cleth and cordage are made. The substance called manila hemp, much empleyed for cordage in America and Eur•pe, is •b tained from one of the species (Musa textilis). Scarcely any parts of these useful plants are devoid of use te man. A limpid fluid issues frem wounds in the bedy of the plant, which is used in medicine, as is alse the reet. It has been recently stated in a forcign medical journal that the preperty which these plants pessess of keeping the surrounding soil moist (as pointed out by Boussingault) has been taken advantage of to afford shade and moisture to the ceffee plant in Venczucla; and that the cultivation of the latter has therefore been greatly increased.
Still another industrial use has lately been propesed for he fruit in the latter country, this being the distillation of brandy. Banana brandy, even from the first distillation, is said te have a pleasant taste and smell, recalling that of the fruit. It centains 52 per cent of alcoh \bullet. As tw hundredweight of the fruit preduces about ten quarts of alcoh \bullet of 06°, banana brandy may yet be destined te play as impertant a part in economy as the alcohol of the sugar cane.

Ramic Fiber and its Manufacture.

This fiber, the utilization of which in textile manufactures has for many years engaged the attention of practical men, still continues te command a large amount of notice. It is undoubtedly deserving of all it receives, because if the difficulties that have hitherte stood in the way of its extensive use can be overcome, we shall have at command a tiber that will de much te emancipate manufacturers frem dependence upen the American cotton, the Russian flax, and the Italian and Chinese silk creps. Besides the independent pesition it would take on its © wn merits, it possesses qualities that would enable it te be substituted, by means of a little ingenuity, for any of those fibers. If it can be preduced sufficiently cheap it may even become a permanent substitute for one or more of them, and to a considerable extent displace them. Whether such an eccurrence would be an advantage or etherwise time only could reveal.
During the past month we have had submitted te our notice seme specimens of geeds manufactured entircly from the rhea plant fiber. The raw material in its dried state, as it is taken in the first precess, was sh๒wn. This is a pliant, reddish brewn, straw-like substance. After passing through the first stage it yiclds a long, light flaxen-colored fiber, of great strength and fineness, and which appears te be divisible te an extreme degree. The next forms in which it was exlibited were in wet spun and dry spun yarns. In the former it possessed a solidity which gives it a somewhat wiry appearance and great strength; in the second it is almost as soft as weol, and may almost be mistaken for it. These yarns wreught inte cleth display similar characteristics. One specimen appears very much like a geod brewnHessian, and aneth er a Belfast brewn linen. A third had passed through the bleaching process, and showed its capability of being adapted for table linen, napkins, diapers, etc. It bleaches clearly and evenly, coming up of a rich pearly whiteness, with a cool, pleasant feel, but with more fiber on the face of it than a linen article would pessess. In each phase of it the distinguishing features are great strength and prebabledurability. In anether case the tiber had been reduced to its finest condition, spun int• a seft, pearly-white hesicry yarn, and worked inte an undershirt, pessessing all the seftness, luster, and beauty -f a similar article in silk
S• far as the samples allowed us te discever. it would ip pear to be free from the distinguishing fault of China grass, from which creases cannot be removed. The inventor stated that he had numerous other fabrics woven from yarns entirely of this fiber, such as dress geods, ribbons, dyed and printed fabrics, cither completed or in precess, and which could be shown when necessary. The specimens exhibited
formed an interesting display, the importance of which, however, depends entirely upen whether, as affirmed, they have been produced by a precess and at a cost that will enable the rhea fiber to take its pesition in commercial markets as a practically useful article.-Textile Manufacturer.

THE EDIBLE MUSSEL

The common edible mussel, Mytilus edulis, attracts our special attention on account of its value as an article of diet and commerce.
In the accompanying engraving, Fig. 1 shows the animal laid open to view, the left half of the triangular shell having been removed, while the brim of the mantle has been thrown back a little to allow a better inspection of the inner organs. Beth parts of the shell are alike in shape and size. The hinge or lock uniting them is located in the smallest

Fig. 1.-EDIBLE MUSSEL.

angle of the triangle formed by the shell, and beth of the lat ter end at this point in short conical elevations. At the oppesite end there is a small \bullet pening in the shell correspending to the anus of the mussel; and in close preximity runs a short fringed tube connecting with the inner organs of respiration.
The peculiar digital form of the foot and the presence \bullet a spinning gland or byssus are characteristic, and both are undoubtedly related to the stationary mode of life of the animal. The hypothenuse of the shell being the face side of the mussel, A is the brim of the mantle of the latter. On beth

Fig. 2.-EDIBLE MUSSEL.-(IYyilius Edulis.)
sides of the møuth, F , will be nøticed the leng, narr•w, folded tentacles, G ; J is the exterior, I the interior respiratory muscle ; E and D are muscles contrelling the feot, B, under and behind the base of which is situated the byssus or spinning gland. From its cavity a greove extends along the lower side of the foet, and ends at its tip in a transverse cavity containing a small plate, perforated by seven small apertures, used for sucking
By means of the foot and the byssean gland the animal is floor. enabled to spin a net or barb, C, consisting of numer threads, attached firmly to the surface of the reck or other - bject forming its abode. These threads are produced from
viscid liquid substance secreted in the byssean gland, which is sucked up inte the apertures of the end of the foot and drawn out int threads, which become quite firm in a shor time. Once attached to a reck or log they resist the action -f the strongest current and the heaviest galc. Fig. 2 is a correct representation of the mussel as attached to a fixed -bject.

If the mytilus desires to change its residence it draws itself forward as far as possible, and attaches a few threads as far ahead as the foot reaches. At the same time a few of the old threads are severed. This manipulation is repeated until a suitable site is reached. Although this mode of locometion is extremely slow, the animal nevertheless manages to tra verse considerable distances in this manner.
The edible mussel inhabits, by preference, those pertions of the shore which are laid dry at low tide; and in the neigh borhood of the mouths of rivers, where the percentage salt in the water is low, bread thick bands may be ebserved cevering that particular section and marking it distinctly Semetimes as many as 2,000 individuals have been counted -n an area of ene square $f \bullet e t$.

As above mentiøned, the animal prefers water containing only a little salt. It abounds, therefore, especially in those Eurepean waters cut eff partly from free communication with the Atlantic, as in the German North Sea, the Baltic and the Adriatic. They have alse been acclimatized in the Caspian Sea, the water of which is not extremely salt.
In northern waters the edible mussel attains its full size in four to five years, and in the Mediterranean in one to tw years. When they propagate each individual preduces (they being hermaphredites) millions of offspring.
Besides being almost indispensable as bait for certain fish they are extensively used as an article of focl. They arc largely cultivated in all Eurepean waters, in se-called "parks." In the North Sea these consist of large numbers of trees, from which the smaller branches only have been cut, and which are planted in the bottom of the sca at such a distance from the shore that their upper pertion is partially laid bare at low water. After four or five years they are raised, stripped, and replaced by others. In the bay of Kiel, Germany, alone about 1,000 of these trees are annually planted and about 1,000 tons of mussels are brought on the market. Bad scasons eccur, however, beth with respect te quality and quantity, owing te varieus causes. In the Adriatic the mussels are raised \bullet r repes extended between p\bullet les rammed inte the ground. The repes are raised and stripped once in cighteen months.

American sumac.

Dr. William McMurtrie, Chemist of the Department of Agriculture, has been making elaborate investigations as te the relative amount of tannic acid and celuring matter in American and Sicily sumac. He finds the American pre duct, when preperly gathered, te be fully equal to the fe reign. Samples of Winchester, Va., sumac were cellected in the months of June, July, and August respectively. Of these samples those cellected in June and July were mixed varieties, and of the preduct collected in August we secured samples of the leaves of Rhus glabra and Rhus copallina separately.
In reperting his experiments Dr. McMurtrie states that in seme of the tests the precipitates obtained by means of the selution of the June collections of Winchester mixed sumac were perfectly white and very much cleaner than any -btained with the Sicilian preduct. "The difference in the color of the precipitates obtained from the solution of the June collection and that obtaincd from solutions of the samples of later collections, was sufficiently marked to prove that the great difficulty in the way of the universal employment of the American to the exclusion of the expensive Sicilian preduct may be ebviated by making eur cellections early in the season-that is, in the month of June. The percentage of tannic acid is not, it is true, quite as high as -btains in July, but it compares favorably with the Sicilian preduct, which, be it remembered, communicates a slightly yellowish tinge to the gelatine precipitate. The amount of coloring matter found in the July collection is sufficient te account for the difference of $\$ 50$ a ton in the market values of the sumac of home and foreign growth, regardless of the proportion of tannic acid. We would therefore advise that, for the purpese of tanning white and delicately celored leather, the cellection be made in June, while for tanning dark colored leathers, and for dycing and calice printing in dark celors, where the slightly yellow coler will hatve ne injurious effect, the cellections be made in July. It appears that for all purpeses the sumac cellected after the 1st of August is inferior in quality. In view of the facts here presented, we cannot help urging upon manufacturers the importance of encouraging the home preduction-of insist ing that the collections be made early in the scason, in order thus te bring about such a change in this matter as te prevent the annual expenditure of over $\$ 600,000$ in gold for the sumac of foreign growth."

NEW AGRICULTURAL INVENTIONS.

An impreved trap attachment for corn cribs, patented by Mr. Adam Harper, of .Beswell, Ind., censists in combining with the raised and slatted bottom of the corn house a serics of swinging side racks that rest inwardly on a subjacent floor.

Mr. James W. Rudelph, of Carmi, Ill., has devised an imoved agricultural implement, that is adapted for both hoe ing and digging, and is casily adjusted for cither use.

