the Mediterranean sixteen monthsare, and met with a ready sale, and more than twenty cargoes have been sent over since that time. The Globe apprehends that before long the coal industry of Great Britain will have to encounter determined rivalry on the part of the United States. American coal will not be landed in England, but will be shipped to ports \bullet n the Continent which are new dependent upen supplies frem the coal fields of the United Kingdom.

Astronomical Notes.

Observatery of Vassar College.
The computations in the following notes are by students of Vassar College. Although only approximate, they will enable the ordinary \bullet bserver to find the planets.
M. M

position of planets for june, 1879

Mercury.
On June 1 Mercury rises at 3 h .41 m . A. M., and sets at 5 h 43 m . P.M. On June 30 Mercury rises at 5 h .31 m . A.M., and sets at 8 h .34 m . P.M.

Mercuryshould be looked for during the last week in June, nearly in the parallel of the point of sunset; it will be in conjunction with the new moon on the 19th.

Vemus.
On June 1 Venus rises at 7 h .22 m . A.M., and sets at 10 h 29 m . P.M. On June 30 Venus rises at 8 h .15 m . A.M., and sets at $10 \mathrm{~h} .6 \mathrm{~m} . \mathrm{P} . \mathrm{M}$
Venus passes 4° south of Pellux on June 2, and $21 / 2^{\circ}$ north of Regulus on June 30
Venus will be near the crescent moon on the evening of June 23.

On June 1 Saturn rises at 2 h . 2 m . A.M., and sets at 2 h . $25 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

On June 13, according to the Nautical Almanac, Saturn will be in crajunction with the moon at 5 h .31 m . Washing ton time. The planct will therefore rise on the morning of that day, following the crescent moon.
On June 30 Mars and Saturn will rise verg nearly together at 0 h .13 m ., and will keep nearly the same path until they set.

Uranns.

On Junc 1. Uranus rises at 10 h .47 m . A.M., and sets at 15 m after midnight. On June 30 Uranus rises at 8 h .58 m . A.M. and sets at 10h. 23m. P.M

The sun has been examined daily, since the first of the year, with a glass of 3 inches aperture. As late as May $8 \mathrm{n} \bullet$ spet had been found. On May 9 a small spet was seen, which had developed within the previous twenty-four hours. It could not be found with the same glass on the 12th, but the large telescope showed that it had broken up inte several minute sections, and was rapidly diminishing.

Mars.
On June 1 Mars rises at 1 h .20 m . A.M., and sets at 51 m . after neen. On June 30 Mars rises at 0h. 13m. A.M., and sets at 39 m . after noen.
Mars will be near the waning meen on June 12. According to the Nautical Almanac Mars will be in cenjunction with Saturn at 2 P.M. on the 30th. The twe planets will therefore be seen to rise ncarly together.

Jupiter.
The planets Jupiter, Saturn, and Mars are all best seen in the morning.
On June 1 Jupiter rises at 44 m . after midnight.
Mars rises north of Jupiter at 1 h .20 m . A.M., and Saturn rises nerth of Mars at $2 \mathrm{~h} ., 2 \mathrm{~m}$. A.M
On June 30 Jupiter rises at 10 h .50 m . P.M., nearly as Venus sets.
Jupiter is very brilliant. We are coming nearer to it, and its moon can be scen with very little optical aid.

The Coney Island Pier

The Ocean Navigation and Pier Cempany, of which Mr. Jacob Lorillard is president, are erecting off West Brighton, Coney Island, an immense iren pier. The contractors are the Delaware Bridge Company, and the censtruction is under the supervision of Messrs. Maclay \& Davies, civil engineers. The pier, when completed, is to be 1,000 feet in length, extending outward from high-water mark. Its width is to be 50 feet, with enlargements of 100 feet in width at the shore end the center and the pier head. It is to be double-decked, with iron substructure, the whole supported by wroughtrron tubular piles 9 inches in diameter, made of onc-half inch metal. These piles are arranged in rows, at distances of 20 feet longitudinally and 16 feet 8 inches laterally. Each pile has at its base a circular cast-iron disk $21 / 2$ feet in diameter, which, when sunk int the sand, acts as a supperting base, and at the depth of 15 or 20 feet insures a perfect foundation. The piles are driven by the "jet water" ystem.
Iron capitals are bolted to the tops of the piles, and they suppert 15 -inch wrought-iren beams, belted together, upen which the superstructure will rest. The entire structure is to be made more secure by being braced throughout with diagenal rods an inch and a half in diameter, and heavy horizontal struts bolted te the beams transversely. When completed, the entire structure will be supported by 260 iron pillars. The flooring of the lower deck will be well finished and inclosed in a handsome irou railing. The landing stage will be at the lower deck of the pierhead, and will be guarded by massive oak fender pieces

More than 100 workmen are engaged in pushing forward the work. Λ t night twe electric lights, one on shore and the other on the movable derrick, are used. The first pile was driven on the 22 d of April. All the material for construction is on the ground, and it is intended to have the last pile in place by the ist of June. On the upper deck \bullet the pier are to be spacious pavilions and saleons. T
structure will cost more than $\$ 150,000$. -Iron Λ ge.

GREEK DRINKING CUP.

The engraving represents the upper face and a diametrical section of an ancient Greek drinking cup which was used

ancient greek drinking cup.

by the soldiers for dipping up the muddy water met with in their marches. The inwardly turned rim prevented the mud from following the water as it was pøured from the vessel This vase or cup is preserved in the Pourtalis collection.

new provision safe

The accompanying engraving represents a very useful household article recently patented by Mr. Samuel Inman, -f 929 South Asland Ave., Chicage, Ill. It is designed for keeping bread, pastry, meats, milk, and other articles of food which require protection from insects or other vermin. The sufc is made in tw parts, the upper part being made air-tight, or nearly se, for
containing bread and pastry, containing bread and pastry,
and pretecting them from the influence of the atmosphere and from insects. The lower pertion consists of a light frame having a door in one side, the whole being covered
with wire gauze, which perwith wire gauze, which per-
mits of a free circulation of mits of a free circulation of
air, while it prevents the enair, while it prevents the en-
trance of rats, mice, or insects. The shelves are formed of slats of wood, secured to end cleats. This part of the

Inman's Provision Safe. safe is irtended for receiving meats, butter, milk, and other articles which require a frec circulation of air around them. The safe may be set upon the cellar floor or hung up by wires, as may be most convenient.

Painting Walls-Seasonable Hints.

Of course, says the American Builder, everybody knows, or ought to know, that walls and ceilings are finished with plaster. But everybedy may not be aware that plaster has the property of absorbing moisture. This, perhaps, will not take place in reoms where a fire is kept steadily; but in rooms left, as is often the case, for weeks without a fire, the walls will take up a considerable quantity of damp. The effect will be injurious to the health of the inmates. There are few persons whe have not suffered from a mysterious cold, caught they know not how, though, perhaps, damp in the plaster had semething te de with it.
The extent to which damp is absorbed in a plastered wall may be discovercd by noticing what se often takes place in rooms where the walls are painted and have become chilled by a scason of cold weather. As soon as the temperature becomes warmer the atmosphere is condensed on the walls, and at times in such quantities as te run off in streams. Now, had it not been for the paint, the greater portion of this moisture would have been absorbed by the plastered walls. And as a consequence the quality of the plaster In view of this defect in plastered walls, it becomes a ques. tion well worth censidering, whether, in finishing a house, the walls should be papered or painted. If paint is decided on, it is highly necessary that the painting be properly done and geod materials empleyed. White lead, which is the
adulterated-a reasen why some painters can de work se much cheaper than others. There are als dish七nest paint ers whe will lay on nothing but "whiting" and size for the first coat, and finish off with one coat of oil paint. It is not easy to detect the fraud at the time, but as such paint soon wears off the wall, and attaches itself to the garments of those whe rub against it, the customer speedily finds out that he has been cheated. It takes three or four coats of good oil paint honestly laid on to make geod work of painting plastered walls.
In painting walls there is ample scope for taste, and such colors may be chosen as are most suitable for each apart ment, and in harmony with the furniture. Apartments lighted from the south and west, particularly in a summer residence, should be cool in their coloring; but the apartments of a town house ought all to appreach toward a warm tone. In a drawing reom the coloring should be characterized by vivacity, gayety, and light cheerfulness; by light tints of brilvacity, gayety, and light cheerfulness; by light tints of brilliant colors with a considerable degree of contrast and gild-
ing-the walls being kept in due suberdination to the furni-ing-the walls being kept in due subordination to the furni-
ture, though partaking of the general liveliness. The characteristic coloring of dining rooms should be warm, rich and substantial, without vivid contrasts, and gilding should be avoided, unless in small quantities for the sake of relief Parlors ought to be in a medium style, between that of a drawing reom and dining reom. Libraries should be solemn, grave, and quiet in celor and finish, while berdchambers should be light, cleanly, and exceedingly cheerful. A greater degree of contrast between the room and its furniture may be admitted in the chamber than in any other apartment. Stairways, halls, and vestibules should be of a ceol tone and simple in their style of coloring, leing in that what they are in utility-a link between the exterior simplicity of a house and its interior richness and comfort

Mr. Gary has the Last word.

To the Editor of the Scientitic American
As y $\bullet u r$ correspendent " \mathbf{E}.," in your issue for May 17 , page 304, has made some misstatements, will you allow me t correct him? In referring to a letter written by me and published by y॰u, April 5, he says, "Mr. Gary's kn॰wledge -f history is as defective as his knowledge of magnetism and electricity," and he advises me, before I write any more history of science, to be at the pains of studying it a little more carefully.
Allow me te say that all the history I attempted in the letter referred to was the following sentence: "The law of gravitation was not discovered in a laboratory, nor was the pewer of steam nor electricity." This is all the history that I attempted, and the Scientific American, which you correspondent will ackn॰ wledge is geed authority, remarked in regard to this, in the same number in which it appeared, that "everybedy will agree with what our correspendent says about laboratory discoveries, Newton and the apple, Franklin and the kite string."

Your correspondent E. alse holds up before your readers a list of honored and respected names as martyrsto "con ceited ignerance, and mutilated and \bullet utraged history," and tries to vindicate history and himself by making other mis tries te vindicate history and himsclf by making other mis-
statements. He says: "Mr. Gary brags that he is ignorant of what others have done." I humbly acknowledge that I d• not know it all, but I never brag about it. As to his as sertion that Professor Henry advised me to buy $\$ 50$ worth of books and study up on magnetism before wasting more time, I have to say that Prefessor Henry never said anything of the kind. Another eminent scientist made a similar remark before he saw my discovery, but after seeing it, he advised me te ge alhead.
Let us hope your correspondent's knowledge of history and science is more accurate than his assertions in regard te current events. It is to be fcared that " much learning hath made him mad."
W. W. Gary.

Boston, Mass.

Malleable Nickel and Cobalt.

Fleitmann has succeeded, by a very simple device, in ob aining cast nickel in a malleable and ductile form, even when cold, while cobalt prepared in the same manner pos sessed such hardness when cold that he expects it can be used for cutting instruments, while het it is beth malleable and ductile. His precess consists in adding to the fused metal, through a hole in the lid of the crucibles, $1 / 8$ per cent of me tallic magnesium, which possesses a remarkable power of de strøying carbenic exide. The author is of the opinion that the poreus and crystalline character of cast nickel is due te its absorption of carbonic exide gas while in a molten state It is not impossible, h॰wever, that \bullet wing to the great affin ity of magnesium for nitrogen, its action may be due to the destruction of cyanegen in the metal.
C \bullet balt prepared in this manner possessed none of the red dish color attributed to it in the text-books, but actually excelled nickel in whiteness and brilliancy.
He alse welded these metals on to iron and steel at a white heat, and strips thus welded were rolled out to the finest number without separating from each other.-Berichte d. d. ch. Ges.
Soot for Roses.-C॰llect seme seet frem a chimney or stove where wood is used for fuel, put inte an old pitcher, and pour hot water upen it. When cool, use it to water your plants every few days. The effect upen plants is won derful in producing a rapid growth of thrifty shoots, with large tbick leaves and a great number of richly-tinted roses.

Plantains and Bananas. Of all plants which are the preduce of the trepics, none
ane superior in interest to the plantains and banas, two are superior in interest to the plantains and bananas, twe
closely allied species of the genus Musa. Of the several species of this genus, one has received the specific name of paradisiaca, under the supposition that it was the "tree of life," or the "tree of the knowledge of geod and evil," spoken of in the Scriptures. St. Pierre ebserves that the violet cone at the end of a branch of plantains, with the stigmas peering through like gleaming cyes, might well have suggested to the guilty imagination of Eve the semblance of a serpent tempting her to pluck the forbidden fruit it bore, as an erect and gelden crest. Though some of the species attain a height of 20 to 30 feet, they are herbaceous plants, growing up, flowering, fruiting, and then dying down to give place to other shoots from the same root. The fruit ripens in succession from the base to the apex of the flowering stem, se that on the same plant flowers and ripe fruit will be found asseciated. One stalk of fruit will attain three fect, and bear from 120 to 150 , even 180 plantains, the entire weight of which would be from 50 t ${ }^{7} 70 \mathrm{lb}$. Dried plantains form an article of internal commerce in India, and, in a few instances, have been exported. When deprived of their skin and dried in the sun, they are reduced to meal, in great request in the W est Indies for children and invalids. A recent French exchange states that efforts are being made in Venczuela to get up an export trade formeal of this sort, the supply being much greater than the heme demand. Prefessor Johnston states that the fruit approaches most nearly in compesition and nutrit the meal to that of rice.
All the species contain a large number of spiral vessels, and afford a strong and valuable fiber, from which cleth and cordage are made. The substance called manila hemp, much empleyed for cordage in America and Eur•pe, is \bullet btained from one of the species (Musa textilis). Scarcely any parts of these useful plants are devoid of use to man. A limpid fluid issues from wounds in the body of the plant, which is used in medicine, as is alse the reot. It has been recently stated in a foreign medical journal that the property which these plants possess of keeping the surrounding soil moist (as pointed out by Boussingault) has been taken advantage of to aftord shade and moisture to the ceffee plant in Venczucla; and that the cultivation of the latter has therefore been greatly increased.
Still another industrial use has lately been proposed for the fruit in the latter country, this being the distillation of brandy. Banana brandy, even from the first distillation, is said to have a pleasant taste and smell, recalling that of the fruit. It contains 52 per cent of alcohol. As tw hundredweight of the fruit preduces about ten quarts of alcohol of 96°, banana brandy may yet be destined to play as important a part in economy as the alcohol of the sugar cane.

Ramie Fiber and its Manufacture

This fiber, the utilization of which in textile manufactures has for many years engaged the attention of practical men, still continues te command a large amount of notice. It is undeubtedly deserving of all it receives, because if the difficulties that have hitherte stood in the way of its extensive use can be overcome, we shall have at command a tiber that will de much te emancipate manufacturers frem dependence upon the American cotton, the Russian flax, and the Italian and Chinese silk crops. Besides the independent position it would take on its © wn merits, it possesses qualities that would enable it to be substituted, by means of a little ingenuity, for any of those fibers. If it can be preduced sufficiently cheap it may even become a permanent substitute for one or more of them, and to a considerable extent displace them. Whether such an eccurrence would be an advantage or \bullet therwise time \bullet nly could reveal.
During the past month we have had submitted te our netice some specimens of geods manufacturedentirely from the rhea plant fiber. The raw material in its dried state, as it is taken in the first precess, was sh๒wn. This is a pliant, reddish brewn, straw-like substance. After passing through the first stage it yields a long, light flaxen-colored fiber, of great strength and fineness, and which appears to be divisible to an extreme degrec. The next formsin which it was exlibited were in wet spun and dry spun yarns. In the former it possessed a solidity which gives it a somewhat wiry appearance and great strength; in the second it is almost as soft as weol, and may almost be mistaken for it. These yarns wrought inte cleth display similar characteristics. One specimen appears very much like a geod brown Hessian, and anoth er a Belfast brown linen. A third had passed through the bleaching process, and showed its capability of being adapted for table linen, napkins, diapers, etc. It bleaches clearly and evenly, coming up of a rich pearly whiteness, with a ceol, pleasant feel, but with more fiber on the face of it than a linen article would possess. In each phase of it the distinguishing features are greatstrength and probabledurability. In another case the tiber had been reduced to its finest condition, spun inte a seft, pearly-white hosicry yarn, and worked inte an undershirt, possessing all the softness, luster, and beauty -f a similar article in silk.
S७ far as the samples allowed us te discever. it weuld ip pear to be free from the distinguishing fault of China grass, from which creases cannot be removed. The inventor stated that he had numerous other fabrics woven from yarns entirely of this fiber, such as dress geods, ribbens, dyed and printed fabrics, cither completed or in process, and which could be shown when necessary. The specimens exhibited
formed an interesting display, the importance of which, however, depends entirely upøn whether, as affirmed, they have been preduced by a precess and at a cost that will enable the rhea fiber to take its pesition in commercial markets as a practically useful article.-Teatile Manufacturer.

THE EDIBLE MUSSEL

The common edible mussel, Mytilus edulis, attracts our special attention on account of its value as an article of diet and commerce.
In the accompanying engraving, Fig. 1 shows the animal laid open to view, the left half of the triangular shell having been removed, while the brim of the mantle has been thrown back a little to allow a better inspection of the inner organs. Both parts of the shell are alike in shape and size. The hinge or lock uniting them is located in the smallest

Fig. 1.-EDIBLE MUSSEL.

angle of the triangle formed by the shell, and beth of the lat ter end at this point in shert conical elevations. At the \bullet ppesite end there is a small \bullet pening in the shell corresponding to the anus of the mussel; and in close preximity runs a short fringed tube connecting with the inner organs of respiration.
The peculiar digital form of the foot and the presence ef a spinning gland or byssus are characteristic, and both are undoubtedly related to the stationary mede the face side of the mussel, A is the brim of the mantle of the latter. On beth

Fig. 2.-EDIBLE MUSSEL.-(.Iylilus Edulis.)
sides of the mouth, F , will be noticed the long, narrow, folded tentacles, G ; J is the exterior, I the interior respiratory muscle; E and D are muscles contrelling the feet, B, under and behind the base of which is situated the byssus or spinning gland. From its cavity a groove extends along the lower side of the foot, and ends at its tip in a transverse cavity containing a small plate, perforated by seven small apertures, used for sucking.
By means of the foot and the byssean gland the animal is floor.
enabled to spin a net or barb, C, consisting of numereus thin Mr. James W. Rudølph, of Carmi, Ill., has devised an imthreads, attached firmly to the surface of the reck or ether preved agricultural implement, that is adapted for beth hee \bullet bject forming its abode. These threads are produced from ing and digging, and is casily adjusted for either use.
viscid liquid substance secreted in the byssean gland, which is sucked up inte the apertures of the end of the foot and drawn out into threads, which become quite firm in a short time. Once attached to a rock or log they resist the action of the strongest current and the heaviest galc. Fig. 2 is a correct representation of the mussel as attached to a fixed -bject.
lf the mytilus desires te change its residence it draws itself forward as far as possible, and attaches a few threads as far ahead as the foot reaches. At the same time a few of the old threads are severed. This manipulation is repeated until a suitable site is reached. Although this mode of locomotion is extremely slow, the animal nevertheless manages to tra verse considerable distances in this manner.
The edible mussel inhabits, by preference, those portions of the shore which are laid dry at low tide; and in the neighborhood of the mouths of rivers, where the percentage of salt in the water is low, broad thick bands may be observed cevering that particular section and marking it distinctly Sometimes as many as 2,000 individuals have been counted -n an area of one square foot.
As above mentioned, the animal prefers water containing only a little salt. It abounds, therefore, especially in those European waters cut off partly from free communication with the Atlantic, as in the German North Sea, the Baltic, and the Adriatic. They have alse been acclimatized in the Caspian Sea, the water of which is not extremely salt.
In northern waters the edible mussel attains its full size in four to five years, and in the Mediterranean in one to twe years. When they propagate each individual preduces (they being hermaphredites) millions of offspring.
Besides being almest indispénsable as bait for certain fish, they are extensively used as an article of focl. They are largely cultivated in all European waters, in se-called "parks." In the North Sea these consist of large numbers of trees, from which the smaller branches only have been cut, and which are planted in the bottom of the sca at such a distance from the shore that their upper pertion is partially laid bare at low water. After four or five years they are raised, stripped, and replaced by others. In the bay of Kiel, Germany, alone about 1,000 of these trees are annually planted and about 1,000 tons of mussels are brought on the market. Bad seas॰ns $\bullet c c u r, ~ h \bullet w e v e r, ~ b e t h ~ w i t h ~ r e s p e c t ~ t e ~ q u a l i t y ~ a n d ~ q u a n-~$ tity, owing to various causes. In the Adriatic the mussels are raised on ropes extended between p॰les rammed int the ground. The ropes are raised and stripped ence in cighteen months.

American Sumac.

Dr. William McMurtrie, Chemist of the Department of Agriculture, has been making elaborate investigations as to the relative amount of tannic acid and coluring matter in American and Sicily sumac. He finds the American pre duct, when properly gathered, to be fully equal to the fe reign. Samples of Winchester, Va., sumac were cellected in the months of June, July, and August respectively. Of these samples those cellected in June and July were mixed varieties, and of the preduct collected in August we secured samples of the leaves of Rhus glabra and Rhus copallira separately.
In reperting his experiments Dr. McMurtrie states that in some of the tests the precipitates \bullet btained by means of the solution of the Junc collections of Winchester mixed sumac were perfectly white and very much cleaner than any -btained with the Sicilian preduct. "The difference in the color of the precipitates \bullet btained $\mathrm{fr} \circ \mathrm{m}$ the solution of the June collection and that obtaincl from solutions of the samples of later collections, was sufficiently marked te prove that the great difficulty in the way of the universal employment of the American to the exclusion of the expensive Sicilian preduct may be ebviated by making eur cellections early in the seasen-that is, in the month of June. The percentage of tannic acid is n七t, it is true, quite as high as -btains in July, but it compares favorably with the Sicilian preduct, which, be it remembered, communicates a slightly yellowish tinge to the gelatine precipitate. The amount of coloring matter found in the July collection is sufficient to account for the difference of $\$ 50 \mathrm{a}$ ton in the market values of the sumac of home and foreign growth, regardless of the proportion of tannic acid. We would therefore advise that, for the purpese of tanning white and delicately colored leather, the collection be made in June, while for tanning dark colored leathers, and for dyeing and calice printing in dark colors, where the slightly yellow coler will have ne injurious effect, the collections be made in July. It appears that for all purposes the sumac collected after the 1st of August is inferior in quality. In view of the facts here presented, we cannot dhelp urging upon manufacturers the importance of encouraging the home preduction-of insist ing that the collections be made early in the season, in order thus te bring about such a change in this matter as te prevent the annual expenditure of over $\$ 600,000$ in gold for the sumac of foreign growth.'

NEW AGRICULTURAL INVENTIONS.

An impreved trap attachment for corn cribs, patented by Mr. Adam Harper, of Boswell, Ind., consists in combining with the raised and slatted bottom of the corn house a series of swinging side racks that rest inwardly on a subjacent Mr.

