Friontifin Rmerian.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

published weekly at

NO. 3 ' PARK ROW, NEW YORK
o. D. MUNN.
A. E. BEAC̄H.

TERMIS FOR THE SCIENTIFIC AMERICAN.

 One copy, one year. postage included.e.One copy, six months, postage included

MUNN \& CO., 37 ParkRow, New York.

The Scientific American Supplement is a distinct paper from the Scientific american. the supplemen is 1 ssued weekly. Every number contains 16 octavo pages, with handsom
cover. uniform in size with ScIENTIFIC AM ERICAN. Terms of subscriptio for SUPPLEMIENT, 95.00 a year, postage paid, to subscribers.
10 cents. Sold by all news dealers throughout the country 10 cents. Sold by all news dealers throughout the country will be sent for one year, postage free, on receipt of seven dolars. Bot papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal order, or registered letter Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition
The Scientific American Export Edition is a large and splendid per-
odical, issued once a month. Each number contains about one hundred arge quarto pages, profusely illustrated, embracing: (1.) Most of the
plates and pages of the four preceding weekly issues of the scievtip plates and pages of ene precedng weekly issues of the ScIENTIFic Commercial, trade, and manufacturing announcements of leading house Terms for Export Edition, 85.00 a year, sent prepaid to any part of the
world. Single conies 50 cents. Manufacturers and others who dind world. Single copies 50 cents. Manu Cacturers and others who desire
to secure foreign trade may have large. and handsomely displayed an nouncements publighed in this edition at a very moderate cost. The Scievtific Amprican Export Edition has a large guaranteed circu co 37 lark Row, New Pri

VOL. XL., No. 20. [New Seribs.] Thirty-fifth Year.
NEW YORK, SATURDAY, MAY 17, 1879.

TABLE OF CONTENTS OF

the scientific american supplement NO. 176.
For the Week ending May 17, 1879

 fgures

111.

crystal. Crystallography, and how to study crystals. A simple and
practical methon
synthetical Produretion of Rhod anides and Ferro-cyanitides. Note on
thatetion or Chloral Hydrate and Rhoosanide of Ammonlum.
New Dyes.

- MEDICINE AND HYGINE.-Cilinical Lecture on Burns. By R. J.

Gangrene. Be
Painess Death.

a new estimate of the world's age
Geologists, astronomers, and physicists alike have hitherto been baffed in their attempts to set up any satismeasure geological time and thus aftor will approximatel the antiquity of our globe. Mr. Millard Reade of Live pool, has recently contributed to the Royal Society a very suggestive paper, in which he endeavors to grapple with the question by employing the limestone rocks of the earth's crust as an index of geological time. Limestones have been in course of formation from the earliest known geological periods, but it would appear that the later formed strata are more calcareous than the earlier, and that there has, in fact, been a gradually progressive increase of calcareous matter. The very extensive deposition of carbonate of lime over wide areas of the ocean bottom at the present day is sufficiently attested by the recent soundings of the Challenger Accoraing to Mr. Reade's estimate, the sedimentary crust of which probably one tenth consists of calcareous matter. In seeking the origin of this calcareous matter, it is assumed that the primitive rocks of the original crust were of the nature of granitic or basaltic rocks. By the disintegration of such rocks, calcareous and other sedimentary deposits have been formed. The amount of lime salts in water which drain districts made of granites and basalts is found, by a cemparison of analyses, to be on an average about 3.73 parts in 100,000 parts of water. It is further assumed that the exposed areas of igneous rocks, taking an average throughout all geological time, will bear to the exposures of sedi mentary rocks a ratio of about one to nine. From these and other data Mr. Reade concludes that the elimination of the calcareous matter now found in all the sedimentary strata must have occupied at least 600 millions of years. This, therefore, represents the mintmum age of the world. The author infers that the formation of the Laurentian, Cam brian, and Silurian strata must have occupied about 200 millions of years; the old red sandstone, the carboniferous, and the poikilitic systems, another 200 millions; and all the other strata, the remaining 200 millions. Mr. Reade is therefore, led to believe that geological time has been enor mously in excess of the limits urged by certain physicists and that it has been ample to allow for all the changes which, on the hypothesis of evolution, have occurred in the organic world,

the longest tunnel in the world

The Joseph II. mining adit, at Schemnitz, Hungary, be gun in 1782 and finished last October, is now the longes tunnel in the world. Its length is 16,538 meters; that of the St. Gothard tunnel being 14,920, and the Mount Cenis tun nel 12,233 meters.
The object of the adit is the drainage of the important gold and silver mines at Schemnitz. It furnishes a geologi cal section more than ten miles in length, and gives not onl valuable information as to the downward prolongation of the lodes known in the upper levels, but some new ones have been traversed, and the entire series of rocks, with their mutual limits as well as modifications and occasional transitions, are disclosed without interruption.
The entire cost of the tunnel was $4,599,000$ florins-about $\$ 2,300,000$. Its height is 3 meters; width, 1.6 meter. By the methods of working employed during the last three years it would have taken twenty-seven years to do the entire work.

THE POWER OF VIBRATION HARNESSED

Mr. Keeley has made another advance, and has perfecte what the World describes in small caps as "an invention which sensible men believe must ere long revolu Mrionize the great industries of mankind.
Mr. Keeley's former generator, which cost him $\$ 60,000$ was found to be inadequate, and has been broken up and sold for old iron; but this expenditure is regretted by none of those interested, for they know-so we read in the World's three column report-that through it Mr. Keeley has been enabled to accomplish what he set out to do; which is a for tunate circumstance for Mr. Kceley. By replacing the old generator with a new and perfect one, we are told, Mr. Keeley has done away with the necessity for storing in any large
quantities the " vapor," formerly so called ; and all idea quantities the " vapor," formerly so called; and all idea of utilizing the power on a pressure engine has been discarded, and an engine has been made entirely new as to its principle. The engine is called a "vibratory engine;" and the what ever it is that runs the engine has been rechristened, receiv ing the expressive name " intermolecular etheric substance." This, as our readers will readily perceive, is quite a differen thịng from "cold vapor," and open to none of the scientific objections to which the latter was amenable.
This intermolecular etheric substance has never befor been isolated either by chemical or mechanical means; an this achievement alone is sufficient to make Mr. Keeley the greatest discoverer of this age; indeed of all ages. And, curiously, the intermolecular etheric substance appears to be not more remarkable f or its enormous expansive power than for the vast quantity of it, which is held in unresisting sub jection by a lit tle water. The force locked up in nitro-gly cerine is as nothing to it. Another astounding feature is the ease with which intermolecular etheric substance is evolved and annihilated at will by Mr. Keeley. A pressure of 20,000
lb . to the square inch is generated simply by moving a lever about twelve inches long, so as to open and close a four-way
valve placed within the "cross bar" of the generator, a
small quantity of water having been previously ejected into the generator by means of a small rubber bulb. Another notable circumstance is recorded by Mr. Keeley's reporter, namely, that when the intermolecular etheric substance is evolved and discharged, "neither heat nor cold is generated, and the elastic force is to the touch, when allowed to escape in substantial form, perfectly dry." One does not need to be a man of scientific education to appreciate a marvel like this. Even the common every-day experience of uneducated people will tell them how unusual it is for elastic force in substantial form, escaping under a pressure of $20,000 \mathrm{lb}$. to the square inch, to feel perfectly dry and neither hot nor cold. We can account for it only by supposing the intermolecular etheric substance, this solid elastic force, to possess a texture so fine that it passes through the hand intermolecularly without impinging on the gross matter through which the senses operate
It would not be fair, the World writer observes consider ately, to tell all he knows about Mr. Keeley's discovers ; but he ventures to disclose the fact, for which we cannot be too grateful, that "the force so produced by Mr. Keeley, and having the wonderful energy stated, can be at once condensed so as to give a resulting vacuum." This discovery cannot fail to be of vast advantage to Professor Crookes in his researches upon the trajectory of molecules in vacuo.
To utilize the enormous energy of the intermolecular etheric substance Mr. Keeley, as already stated, has abandoned the idea of a pressure engine, and has invented a novel machine, which he calls a vibratory engine, and which after much labor he has succeeded in "focalizing." For a description of this engine we are again indebted to the World. The writer says:

Its main part consists of a steel disk, about 30 inches in diameter, having a shaft passing through it. The disk is intended to revolve in a vertical plane. Projecting from the disk at right angles to it and near its periphery are a series of 288 steel pins about one eighth of an inch in diameter and varying in length from about five incles to two and one half inches, these pins being highly vibratory. This disk is surounded with a cast iron casing resting on a cast iron bed plate, underneath which are some stecl disks that are also highly vibratory. I venture to say that any engineer seeing this invention at rest would say that it could not be propelled."
But it does go wonderfully, running for hours at a time having been started and being kept running by the inter molecular ctheric substance generated in a second. The function of the steel pins is, according to Mr. Keeley's explanation, to intensify the vibration of the intermolecular etheric substance, producing "a rotary or vertical circle of vibration," which circle of vibration runs the engine. By this device which circle of vibration runs the engine. By this device
Mr. Keeley says he has succeeded in harnessingthe power of Mr. Keeley says he has succeeded in harnessing the power of
vibration, hitherto, except in music, known only as a destructive power, against which engineers had to guard with the greatest care. To illustrate the terrible power of vibration and the great importance of harnessing it, the World writer says:
"Long ago I read of a man who said he could fiddle a bridge down, and being jeered at for his presumption, set his fiddle to accord with the key of the bridge, and came so dan gerously near succeeding in his work of destruction as to convince the scoffers of his ability to do what he said. Mr. Keeley's motor and engine recalled this story to me, and also convinced me that the fiddler was theoretically correct in his boast. Indeed, Mr. Keeley says that it is theoretically possible to shake down a house with a violin.
In this statement Mr. Kecley is, as usual, only too modest many a man having publicly brought down a house by skillful fiddling.
And just here we may express our conviction that Mr. Keeley's practical labors have furnished a demonstration of a theory which we have long entertained as furnishing an explanation of the conduct of the Emperor Nero during the great fire in Rome. Nero fiddled while Rome was burning, breat fire in Rome. Nero fidded while Rome was burning, but he did it to save the city. The conflagration had reached
a pitch at which it could not be stayed except by surrounda pitch at which it could not be stayed except by surround-
ing it with wide spaces vacant of buildings. Modern fireing it with wide spaces vacant of buildings. Modern fire
men clear such spaces when occasion demands by blowing men clear such spaces when occasion demands by blowing down the houses with gunpowder. Nero-the Keeley of his age-resorted to "the power of vibration," and called it into action by means of his fiddle, thercby leveling whole blocks of temples and palaces and tenement houses, for the salvation of the rest of the city. The ignorant populace thought he was fiddling for fun. Those who do not understand Mr. Keeley are liable to misjudge him in like manner.

WHEN ARE $\overrightarrow{\text { LA }}$ W DISCOVERED?

In his letter to the Scientific American, of April 5th, Mr. Gary intimates that the world is not indebted to "learned professors" and to "laboratories" for a knowledge of the laws of gravitation, of magnetism, and of electricity, and he takes pains to specify the names of Newton, of Franklin, and of Faraday, as if they would exemplify his text. He evi dently thinks thatignorant plow boys have not unfrequently broken into these fields that are supposed to be in the special charge of "learned professors," and have tauglt the latter that they did not know much about their subjects, and that their so-called laws were not laws at all.
But Mr. Gary's knowledge of history is as defective as his knowledge of magnetism and of electricity, and it may interest him, and perhaps some others, to learn how much of the knowledge we possess on the above subjects came from "learned professors " and their " laboratories."

1st. "Newton with his apple." It is a mistake to imagine that the law of gravitation was discovered in the garden when the apple was observed to fall; that happened in 1666. The law was discovered in 1683, at the time when the calculations began to assume such shape that Newton became unable to finish them and handed them over to an assistant. The discovery unnerved Newton, but it was not in the garden, but seventeen years after the observation. If Newton really thought that his discovery was made in the garden, his emotion was certainly very late in showing itself.
2d. "Franklin with his kite." Now what Franklin discovered was not a law, but the identity of electricity and
lightning, an interesting fact that had many applications, all in accordance with what was known about electricity. But Franklin was a skillful experimenter, and also knew well what others had done, and so far was quite unlike Mr. Gary, who brags that he is ignorant of what others have done.
3d. Precisely the same may be said concerning "Faraday and his magnets and iron filings." He had then been twenty years in the laboratory of the Royal Institution, and he was
professor of chemistry then, and a very learned professor he professor of chemistry then, and a very learn
was, too, in both electricity and magnetism.
4th. "The power of steam." Now the names of those who gave attention to that subject and developed the power.are: (1) Hiero, of Alexandria, a mathematician and natural philosopher.
(2) Papin, a professor of mathematics in Marburg.
(3) Watt, an instrument maker to the Universityof Glasgow. So far there is nothing to countenance the idea that conceited ignorance has added to the world's stock of knowledge in these directions; but let us see who has done the work and given us the laws in electricity and magnetism:
Gilbert, Fellow of the College of Physicians, London
Galvani, Professor of Anatomy, University of Bologna.
Volta, Professor of Natural Philosophy, University of Pavia.
Oersted, Professor of Natural Philosophy, University of Copenhagen.
Ampère, Inspector General of the University of Paris. Ohm, Professor of Mathematics, College of Cologne. Ohm, Professor of Mathematics, College of Cologne.
Weber, Professor of Natural Philosophy, Göttingen. Weber, Professor of Natural Philosophy, Göttingen.
Faraday, Professor of Chemistry, Royal Institution, L Faraday, Professor of Chemistry, Royal Institution, L
don. Thomson, Professor of Nàtural Philosophy, University of Glasgow.
Maxwell, Professor of Natural Philosophy, University of Cambridge.
Henry, Professor of Natural Philosophy, PrincetonCollege. These are the men who have discovered about all we know about these matters; so it is evident that "learned professors" have done the work, and it was done in "laboratories." When Mr. Gary took his supposed discovery to the late Pro. fessor Henry, the latter, after listening patiently to his statement, told him to buy $\$ 00$ worth of books and study up on magnetism before he wasted more time in experiment, and to this advice may now be made the recommendation that before he writes any more history of science he be at the pains of studying it more carefully.

moleculá chemistry.-No. 1.

The question whether matter is or is not infinitely divis ible is of no direct consequence to theoretical chemistry, as we are not in possession of any facts that could enable us to decide it. We do, however, possess evidence that matter exists in the form of exceedingly minute particles. The poros. ity of bodies, their compressibility, and their contraction and expansion when they are cooled or heated, would alone warrant the conclusion that the matter they contain exists in a state of division, because it does not fill the space it occupies. The familiar experiment of mixing half a pint of absolute alcohol with half a pint of water and obtaining less than one pint of mixture admits of no other interpretation than that these substances consist of particles separated by spaces, and that some of the particles of one have found their way into the interstices of the other
Let us now see how this purely physical conception of mat ter will aid us in the explanation of chemical facts.
On analyzing the chloride, the bromide, and the iodide of hydrogen, we find them to contain for every gramme of hydrogen: 35.368 grammes of chlorine, $79 \cdot 750$ of bromine, and 126.533 of iodine. Again, theseidentical quantities are found in combination with 39.040 grammes of potassium in each case, and also with 22980 grammes of sodium in each case. It appears, then, that 39.040 grammes of potassium are proportional or equivalent to $22 \cdot 980$ grammes of sodium and to 1 gramme of hydrogen; also, that $35 \cdot 368$ grammes of chlorine are equivalent to 79.750 of bromine and to 126.533 of iodine. The analysis of vast numbers of chemical compounds has shown these figures to be invariable, and it has been as certained not only that the substances mentioned, but that every element has a weight peculiar to itself, which it retains throughout all its numerous compounds. In other words, the constituents of a chemical compound are combined in fixed unalterable proportions. Thus, pure chloride of sodium, no matter how it may be prepared or from what part of the world it may be obtained, always contains its chlorine and itssodium in the proportion of $35 \cdot 368$ to 22.980 . Hence
chemical formulæ are made to tell us not only what elements chemical formulæ are made to tell us not only what elements a substance contains, but also in what proportions they are
combined. Chemists have their table of combined. Chemists have their table of combining numbers,
and when they write down the initial feters of elements, as for instance HI, they mean one part by weight of hydrogen combined with 126.0333 parts of iodine.

To Wenzel and Richter belongs the credit of having first recognized the equivalent relations between the quantities of
different bases required to neutralize the same acid, and also different bases required to neutralize the same acid, and also
between the quantities of different acids necessary to neutral ize the same base.
Dalton discovered that carbonic acid contains the same quantity of carbon as carbonic oxide, but twice as much oxygen; also that marsh gas contains as much carbonas olefiant gas, but twice as much hydrogen. From these and many other facts he formulated the following law, which has been firmly established by extensive investigations. When a substance combines with a greater weight of another than the ascertained equivalent or proportional weight of the latter, it will do so with twice, three times, four times, etc., that equivalent, and not with any intermediate or fractional number. Thus 14.009 parts by weight of nitrogen will combine with $15 \cdot 960$, or $2 \times 15 \cdot 960$, or $3 \times 15 \cdot 960$, or $4 \times 15 \cdot 960$, or 5×15.960 parts of oxygen, but not with $11 / 2,11 / 4,11 / 8$, c., times $15: 960$.

The explanation of this wonderful fundamental fact of chemical science is as profound as it is simple. We have seen that matter is composed of particles separated by spaces; we now learn that these particles have different weights. The weight of a particle of hydrogen being taken as unity, the weight of a particle of oxygen will be 15.960 , of nitrogen $14 \cdot 009$, of chlorine $35 \cdot 368$, of sodium $22 \cdot 980$. These ultimate particles have received the name of atoms, and we retain this name, not because they cannot be further subdivided-an assertion that would lead us to pure speculation-but because they constitute the smallest undivided portions of matter whose actual existence we have a right to affirm. Without complicating the present discussion with the details of the dynamical or kinetic theory, it will be stated, and no doubt readily conceded, that these atoms must be regarded as the centers or vehicles of forces, and as subject to the laws that govern larger bodies of matter. Now, what happens when two substances combine? The atoms of one simply enter in the sphere of attraction of the atoms of the other, and arrange themselves in groups or nuclei, each of which acts as a whole, and the result is a compound body having new properties. Now, it is evident that we may have a nucleus composed of one atom of nitrogen + one atom of oxygen (NO), or of one atom of nitrogen + two of oxygen $\left(\mathrm{NO}_{2}\right)$, etc.; but as these atoms are never divided, we cannot have $1 \mathrm{~N}+11 / 2 \mathrm{O}$. We may therefore reasonably conclude that the atoms of different
substances possess different weights, and that the combining substances possess different weights, and that the combining or equivalent numbers, determined with the utmost care from
innumerable analyses, especially by Berzelius and Stas, rep resent the relative weights of these atoms. What theirabsolute weight may be we cannot tell; all we know is that an atom of oxygen weighs $15 \cdot 960$ times as much as an atom of hydrogen, and so for the other elements. It follows, further more, that the combining weights of a compound body must be equal to the sum of the atomic weight of its constituents, which clearly explains the discovery of Wenzel and Richter alluded to above.
Let us now examine the method by which the combining, or, as we may now call them, the atomic weights of the elements have been ascertained. Suppose we had analyzed 100 grammes of water and found them to contain $11 \cdot 11$ grammes of hydrogen and $88 \cdot 89$ grammes of oxygen. The proportion is evidently very nearly as $1: 8$; but the question arises, How many atoms of oxygen and how many of hydrogen are neces-
sary to form the smallest possible quantity of water? If sary to form the smallest possible quantity of water? If
water contains one atom of each, the combining weight of water contains one atom of each, the combining weight of
oxygen is 8 ; it if contains two of hydrogen to one of oxygen $\left(\mathrm{H}_{2} \mathrm{O}\right)$ the combining weight of oxygen is 16 ; if it contain two of oxygen to one of hydrogen $\left(\mathrm{HO}_{2}\right)$ the combining
weight of oxygen is 4 , etc. Our analysis does not tell us. we analyzed all possible combinations of oxygen, and so as certained that it never combines in a quantity less than 16 (more accurately 15.960); or if, in a similar way, we found that water never combinesin a lower proportion than $17 \cdot 960$ we might then safely set down the composition of water as $\mathrm{H}_{2} \mathrm{O}$, or $2 \times 1+1 \times 15 \cdot 960=17 \cdot 960$, two atoms of hydrogen for every atom of oxygen. Such a course would, however, involve an amount of labor and an accumulation of difficul ties that would render it impossible in practice. It will be
the subject of the next paper to show how these difficulties the subject of the next paper to show how these difficulties covery.
C. F. K.

EDISON'S ELECTRIC ILLUMINATOR AND DR. DRAPER'S

 EXPERIMENTS THIRTY YEARS AGO.Now that the publication of Mr. Edison's patents for elec tric illumination has made the public acquainted with the details of his process, it is well to recall what had been done on this subject many years ago.
Dr. John W. Draper, in a memoir published in the Ameri can Journal of Arts and Scien nes, 1847, and also in the London, Edinburgh, and Dublin Philosophical Magazine of the same year, gave an exhaustive examination of this subject. He used a strip of platinum, brought to incandescence by the passage of a voltaic current through it, and showed that the light emitted increases in brilliancy far more rapidly than the increments of temperature. The strip of platinum,
brought to a proper temperature by the passare of the brought to a proper temperature by the passage of the elec-
tric current, was connected with an index lever, which measured its expansion. The results thus obtained proved that the increase in the intensity of the light of the ignited platinum became very rapid as the temperature rose. At six times as great as it was at $1,900^{\circ}$. This paper is reprinted
as Memoir I. in his recently published "Sciemtific Memoirs" Harper \& Bros.).
The facts he had thus obtained he applied practically in the construction of a lamp. At p. 45 , in the volume referred to, he says:

Among writers on optics it has been a desideratum toob tain an artificial light of standard brilliancy. The preceding experiments furnish an easy means of supplying that want, and give us what might be termed a 'unit lamp.' A surface of platinum of standard dimensions, raised to a standard temperature by a voltaic current, will always emita constant light. A strip of that metal, one inch long and one twentieth of an inch wide, connected with a lever by which its expan sion might be measured, would yield at $2,000^{\circ} \mathrm{Fah}$. a light suitable for most purposes. An ingenious artist would have very little difficulty, by taking advantage of the movements of the lever, in making a self-acting apparatus, in which the platinum should be maintained at a uniform temperature, notwithstanding any change taking place in the voltaic current."
This memoir treats of the whole subject of the incandescence of platinum very exhaustively, measuring the heat emitted, the light emitted, and its spectrum analysis. Gas companies and others, interested in the rivalry between electric and gas illumination, will do well to examine it closely Though printed in 1867 the experiments it relates were made two or three years previously. Subsequently Dr. Draper used iridio-platinum, and found that he could obtain a much brighter light because of its greater infusibility. At that time the method could not be recommended for public use, be cause it required a nitric acid battery. The dynamo-electric machine has of late years removed that difficulty.

AMERICAN INDUSTRIES.-No. 12.

the manufacture of billiard tables,

To business men and men of sedentary habits the question exercise and recreation is a vital one. Of course there are endless varieties of amusement that may be indulged in, some being beneficial and desirable, while others are pernicious and to be deprecated. Among forms of innocent diversion, a game of billiards may be commended as being a mild form of exercise which sufficiently occupies the mind to dispel thoughts of business, while it brings into action most every muscle in the body
Billiards, like every other game or amusement, may be perverted; but the legitimate use of the ball and cue is undoubtedly beneficial. The game is a social one, and may be properly played by both sexes. That it is growing in popu larity is shown by the constantly increasing demand for billiard tables and their appurtenances.
There are now several manufactories of billiard tables in the United States, but perhaps the oldest and the largest is that of Mr. H.W. Collender. These works are situated in the beautiful village of Stamford, Conn. The five story build ing, with its two towers and French roof, appears more like a modern university building than a manufactory.
The basement contains the engine driven by steam from a boiler in the adjoining boiler house. It also contains the machinery for cutting and planing lumber, and for sawing the slate which forms the bed of the table. The offices and packing room occupy the first floor. Upon the second floor the broad rails and cushions are made. Upon the third floor there is a variety of machinery invented by Mr. Collender especially for the manufacture of these tables. Upon the fourth floor the various parts that have been made by machinery and by hand are assembled and fitted; and upon the fifth floor the varnishing and polishing are done.
In making the wooden frame of the table only thechoicest materials can be used, and the wood requires three years seasoning to insure its staying in place. The corners of the broad rails are carefully mitered and bored by accurate machinery, shown in the lower portion of the engraving, on the first page, and they are fitted to iron corner pieces having a socket for recerving the leg. All of the crosspieces are secured by iron sockets, so that when the parts of the table are fastened together they are not liable to be hrown out of adjustment by atmospheric changes.
The legs are shaped by the machine shown in the upper right hand corner of the engraving, and are sand-papered by the machine shown in the central figure. The varnishing and polishing are of necessity done by hand. A large number of men are constantly employed in this department, giving the final touches which render the exterior of the table attractive. After having spent more than twenty years in perfecting the wooden frame of the billiard table so that it would always support the slate bed in a true plane, Mr. Collender has devised two forms of iron frame of elegant design, which support the bed at every point and are entirely exempt from any objection that might be brought against wooden frames. These tables, the "Inperial" and the "Occidental," are shown in our engraving.
In many points the manufacture of billiard tables is like that of a piano or first class article of furniture, but greater accuracy is required than in either of the branches referred to. As an evidence of the superiority of these tables we may mention that at the Centennial and the Paris Exhibitions they took the highest premium. The warerooms of Mr. H. W. Collender are at 788 Broadway New York; 84 and 86 State street, Chicago, Ill.; and 17 South Fifth street, St. Louis, Mo.

A Japanese Exhibition.-The second General Industrial Exhibition in Tokio is announced for 1881. The latest census gives Tokio a population of $1,042,000$.

