Srumbific Smprima

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors.

PUBLISHED WEEKLY AT

NO. B' PARK ROW, NEW YORK.
A. E. BLACLL

TERMS FOR THE SCIENTIFIC AMERICAN.

MUNN $\&$ co., 37 Park Row, New Yort
The Scientific American Supplement
is a distinct paper from the SCIENTIPIC American. THE SUPPLEMENT
is issued weekly. Every number contains 16 octavo pages, with handsom is issued weekly. Every number contains 16 octavo pages, with handsome
cover. uniform in size with ScIentiric American. Terms of subscrintion for SUPPLEM ©NT, $¥ \overline{0} .00$ a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country. Combined Rates. - The Sciectific American and Supplement
will be sent for one year, postage tree, on receitt of seven delers. will be sent for one y ear, postage tree, on receipt of
papers to one address or different addresses, as desired. The safest way to remit is by draft, postal order, or registered letter
Address MUN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition.
The Scivntific American Export Edition is a large and splendid per
odical, issued once a month. Each number contains about one hundred odical, issued once a month. Each number contains about one hundred
arge quarto pages, profusely illustrated, embracing: (1) Most - of the arge quarto pages, profusely illustrated, embracing: (1.) Most - of the
plates and pages of the four preceding weekly issues of the :cIe.vTIFIC Plates and pages of the four preceding weekly issues of the CIENTIFIC
AMERICAN, with its splendid engravings and valuable in formation: (2.)
Commercial t trade and manufacturing announcements of leading houses. Commercial, trade, and manufacturing announcements of leading houses.
Terms for Export Edition, 85.06 a year, sent prepaid to any part of the Terms for Export Edition, $\$.00$ a year, sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large. and handsom ely displayed an nouncements published int ins export Edition has a large guaranteed circu lition in all commercial places
CO., 37 Park Row, New York.

VOL. XL., No. 19. [New Series.] Thirty-fifth Year. NEW YORK, SATURDAY, MAY 10, 1879.

Contents.	
Tleveland lighted by electricity don	
	S ${ }^{\text {as }}$
	292
	94
	${ }_{3}{ }_{3}$ Patant. met
	, ${ }^{3} 7$ Rais, Ene
	\%3 31 Threat, spool
	${ }_{39} 0^{20}$ Zoological garde

TABLE OF CONTENTS OF

the Scientific american supplemen

 NO. 175.For the Week ending May $10,1879$.

 manzed Frost in description of the freezing raln which caused so
mazazen frost.t. in
France, January
23-25-T-The conditions determining

 classes of comets tains

Nebulp. Ritter's law

STUDY TO HAVE IDEAS.

A suggestive story is told of the late Joseph Harrison, of Philadelphia, inventor of the sectional boiler for which the Academy of Arts and Sciences awarded him the Rumford medal, and widely known as the partner of Winans in Russian railway contracts. He was climbing the Gemmi, in
Swizerland, accompanied by young man, and the conversa tion fell on the younger's chances of rising in the world should he embrace the profession of mechanical engineer. Mr. Harrison favored the idea, saying that this was the age of invention and improvement, that machinery was constant-
ly being applied to new uses, and that he who would make it a study and master it in all its forms would never lack for remunerative employment. "But I have no skill in drawing," objected the young man. "Neither have I," said Mr. Harrison, "I never had time to learn. But I have always found that if I lad an idea I could express it on a shingle with a piece of chalk, and let a draughtsman work it out handsomely and according to rule. And I've generally had ideas enough to keep three or four draughtsmen busy. You can always hire draughtsmen, but you can't hire ideas. Study to have ideas, my boy." It may be added that Mr. Harrison's
success was due not to scholastic advantages, but to native success was due not to schola
capacity and personal effort.
It is a significant circumstance, and one that furnishes the kasis for the severest criticism of the current methods of aca demic instruction, that men who, like Mr. Harrison, have at tained signal eminence for originality of thought have rarely been men of much schooling.
The grand aim of the schools is tofurnish the student with knowledge, a great deal of knowledge in a little time. To do this the method of cram, not that of original research and critical investigation, has to adopted. The student's mental habit becomes that of a receiver, not that of a discoverer.
He is loaded with knowledre, He is loaded with knowledge, but in taking on the load he Inses, through lack of use, if not through stern repression, the capacity to think or act except along the lines of conventionality and habit. The scholastic bias becomes stronger than the original bent, and the man loses in productive power in proportion as he gains in learning.
The fault does not lie wholly in the schools. The people demand for their children a teaching that can be measured quarterly-measured ly quantity, not by quality; and on this score the child who takes most kindly to second-hand ideas
is sure to win. Capacity for original ideas, for original and personal independent work, is at a discount. In other words, what the man most needs to have, the child or youth is least encouraged in cultivating.
While knowledge and skill are both highly desirable, they are still of second rank, and it is possible to acquire them at too great a cost. If a man has ideas-original, individual, creative ideas-he can ustally hire skill and buy knowledge; he cannot hire ideas. We should bethe last to decry skill or knowledge. They are essential elements of education. But they should be gained by processes which make them the tools, not the end of culture. The manslould be the master, not the slave of his laspiais: and whether he is the one or the other depends very laray on the way his knowledge has been gained. And it is better to be the master of a lit-
tle knowledge, with capacity to use it creatively, than to be the unprouctive carrier of all the learning in all the libraries. Our young readers whose scholastic advantages, socalled, have been few, may well take the lesson to heart. Study to have ideas; life will give no end of opportunities for using them.

"the patent right nuisance."

Under this heading the New York Herald ranges itself ed itorially with the opponents of inventors' rights, and discusses the alleged defects of the American patent system with the zeal of a recent convert and the ingenious perversion of the facts of the case characteristic of a misisstructed or unscrupulous advocate. The article reads very like a feeler thrown certain anti-patent associations before the last Congress. runs in this wise:

Americans are notoriously the most inventive race in the world, and the number of patents issued yearly from Washington amounts to many thousands. An inventor like Edison, who has taken out more than 200 patents, is forced to spend no small portion of lis time in ascertaining the scope of analogous inventions made by his numerous rivals, and it is alleged that the success of his recent experiments upon the electric light has been seriously impaired by finding that mos of his proposed improvements were already protected by let-
ters patent. Many of the more obvious inventions have been independently made by dozens of persons, only to find that they lad hech anticipated long before by some unknown individual who had never taken the efficient steps to make his invention known. The issuance of a patent thus becomes,
in a vast majority of cases, only a means of repressing instead of stimulating independent inventions.

That this evil has assumed vast proportions and calls urgently for remedy will not be denied by any one who is familiar with recent discussions in the scientific and techni. cal periodicals. It is well known that nine tenths of the patents issued are of no practical utility, and only serve to confuse the inquirer and waste valuable time. Every inven-
tion of first-class importance has to be ' protected' tion of first-class importance has to be 'protected' by a
score of minor patents which have nothing to do with the main discovery.

It las even beconne: a question of late, in Europe and
America, whether the whole patent system ought not to be
brushed away as a mere impediment to the development of manufacturing industry, leaving future inventors to rely for heir compensation upon such advantages as their exceptional facilities for the production and introduction of their spec ialities as would naturally follow from their priority in the race and their more perfect possession of all the details. In nine cases out of ten the change would be to general advantage; still, some provision ought to be made for discoveries of far-reaching value.

Three remedies would seem to be desirable. In the first instance the number of patents isuucl might be restricted at least-ninety-five per cent by refusing all applications for such patents as are obviously of little or no value, as well as thos which do not represent any new principle. Secondly, many of those inventions which are really of great practical im portance should be at once purchased by the government for the general benefit of the public, every inventor being required to state his terms on maki!ug his application. With inventors of real merit the government can well afford to deal generously. Lastly, all patents should be considered to have lapsed when it can be shown that a reasonable period has elapsed without any effort on the part of the inventor o introduce them."
The assurance with which the name of Mr. Edison is made peg on which to lamy a wecping indictment of the patent ystem is positively amazing. Just think of Mr. Edison a victim to patent rights! and of the community at large as being deprived of the blessings of electric lighting because ther men had been at work upon the problem before M. Elison took it up!
If Mr. Edison's word is good for anything, the public has he best of reasons for believing that, so far from having been hampered by the patent system, he has, as an inventor been largely a product of it. Without the protection it lat given him he would never have been an inventor; ccrtainl he would never have devoted his life to that laborious ant expensive pursuit. He has made invention his business because there is money in it to him, though infinitely greater profit to the world at large. His inventions are paying property because, and only because, they are protected a property by all civilized nations.
The second assertion is equally at variance with truth. Grant, for argument's sakc, the absurdly untruthful state ment that nine tenths of the patents issued are of no practical utility. Does it follow that "they only serve to conf use the inquirer and waste valuable time?" The very opposite is true. Λ liberal patent system insures the publication of all efforts in new directions, and that is a matter of infinite inportance. In his exploration of the unknown every inventor strikes many blind or doubtful paths. Shall he, or shall he not pursue them? Time is limited and he has far to go. The records of the Patent Office ought to furnish him the esults of all previous explor tions. Every patent issued is, in this way, a means of saving fruitless effort and waste of ime. Even "worthless" patents thus become valuable, as warning sign loorirds to the explorer. In the records of the Patent Office he reads: "A tried this way and found it un profitable;" "B tried this-'no thoroughfare;"" "this road leads to the property of C;" " this to where D was lost in ruitless exploration;" and he guides his efforts accordingly. The great object of the patent law is to secure the early publication of all these mental itineraries; and every measure calculated to prevent their publication is mischievous. Not unfrequently, also, the "worthless" patent fails for lack of some means for overcoming a special difficulty, which means are supplied by a discovery made after the life of the patent has expired. It stands, however, a permanent contribution to the history of thought, and the next man is saved the first inventor's fruitless toil; he freely bridges over the difficulty by the aid of the last discovery, and the world gets a valu able invention which it would have missed lad the original worthless" invention vanished unrecorded.
The $/ f_{e}$ ruld's next statement with regard to the recent tendency of Λ merican and European thought, with respect t_{0} the policy of issuing patents for inventions, is another flat misstatement of fact. The current of thought, not only among the common people, but among statesmen, is decidedly in the direction opposite to that asserted. Witness the steady pro gress of foreign patent systems toward the liberality whic The tendency of all syvilem so superior to all others.
The tendency of all civilized nations is steadily toward the fuller and freer recognition of the rights of intellectual property. Countries which, like Switzerland, originally dethe possibility of intellectual property, proclaimed "free rade in ideas," and refused to recognize the inventor's right to the products of his inventive toil, have learned that sound policy as well as abstract justice demands an advance to the position of ligher civilization, and are copying the American patent laws so far as they are able to.
The limitations of space forbid an extended notice of the Heruld's "remedies." They lave been presented in every possible aspect, by the agents of anti-patent associations, in the committee room and in Congress, only to demonstrate nore clearly their pretentiousncss, the impossibility of puting them into practice, and the certain injustice to inventors, small manufacturers, and the public at large, that would flow from an attempt to carry them into execution.

ENGLISH VS. AMERICAN RAILS

Λ short time since Mr. Vanderbilt purchased in England for the New York Central Railroad, 10,000 tons of stecl rails. These rails cost, on slipboard, £5 a ton. To this must he added a duty of $\$ 28$ a ton, making the cost of the rails here
about $\$ 53$ a ton. The price of American steel rails is from $\left.\right|_{\text {stantly supplied with new rails under the usual American }}$ $\$ 45$ to $\$ 47$ a ton; in large lots perhaps as low as $\$ 43$. It is guarantee, without any expense to the company beyond the clear, therefore, that Mr. Vanderbilt paid for the English first outlay." rails something like 25 per cent more than American rails Touching the asserted twelve years' guarantee, Mr. Morrell would have cost him.
Aganst this bargain certain American gentlemen, professing to speak in the interest of American rail makers, have
protested with much viror. One of these rentlemen, Mr. Al fred Earnshaw, of Philidelphia, after taking Mr. Vanderbilt severely to task for wasting his stockholders' money, closes his letter with these words:

If a railroad president has any duties toward his stockholders, if a man occupying high public places has any dutics toward the well-being of a great national industry, and if the railroads have any duties toward American steel rail makers in return for their services past and present, Mr. Vanderbilt's duty bids him plainly and openly give his reasons for this purchase.
When approached by a Tribune reporter, Mr. Vanderbilt pardonably declined to be brought to book after the fashion proposed. A "prominent official of the New York Central Railroad" proved less reticent, and explained the transaction in a way that, if true, reffects little credit upon the manufacturers of stecl rails in this country. He said that the order was not given for the English rails until careful tests, chemical and other, had proved the English rails to be worth the price. The English manufacturers gave a guaran-
tee of twelve years' wear, all rails not coming up to the tee of twelve years' wear, all rails not coming up to the
standard to be replaced free of cost. Every American manufacturer applied to declined to furnish such a guarantee, five years being the longest time for which a guarantee was offered. "It is well known to railroad men," said the Cen. tral officer, "that the utmost limit of wear for American steel rails, as now manufactured, is five years, where they are subjected to the strain of heavy traffic such as continu ally passes over the New York Central road. Some of the Euglish rails now laid on this road have been in constant use for many years without showing the least evidence of wear, while American steel, laid at the same time, has worn out, and must be replaced." That (these conditions being
truc) the English rails were the cheaper and the bargain grood one goes without telling.
There remains, however, a serious question for the American rail makers to answer, namely, Why are American rails inferior to the English" Mr. Earnshaw writes: "In justice to Mr. Vanderbilt, I will say that I believe it to be true that the American rais laid on his Western roads have worn out quicker than the foreign rails, but their life has not ween sufficiently short to account for the difference in price.
On the contrary, the difference between a five years' guarantee and one for twelve years does amply justify the payment of a price larger by only 25 per cent. And the case against the American rail makers is even worse than appears in his favor a duty which practically doubles the cost of English rails in this country. Why is it, then, that the American manufacturer cannot make for $\$ 50$ as good a rail as the English can for \$25? The English price is no doubt exceptionally low just now; but the duty more than equalizes the conditions.
Since: the foregoing was in type, the president of the American Iron and Stecl Association, Mr. D. J. Morrell, has replied in the Tribune to the statements of the railway official quoted the the reporter of that paper. Mr. Morrell says that the alleged inferiority of American rails is not sustained by fact; and that the asserted brevity of the life of American steel rails "is a :mpll assertion of what is absolutely and entirely untrue." He says: "That some American stecl rails may not under certain conditions last five years or even one
yearr may be true, and it is equally true of foreign rails. The usual guarantee of Amcrican rails is five years' wear, with an agreement to replace all such as give out from fair usige within that time; and for this guarantee no extra clarge is made. It is not fair for Mr. Vanderbilt to suppose that all American manufacturers of steel rails are so stupid as to make an inferior article, when, with the best of mate rials to start with, they can with the practice of intelligence anil skill make a good rail with just as little cost as they can an inferior rail."
Further on Mr. Morrell says: "The hardness of temper of the rails is regulated by the amount of carbon the steel contains, and this is usually controlled by the roads that use them, some railroad managers requiring their rails much softer than others, preferring toughness and immunity against possible accidents from breaking, to the extreme hardness which would insure greater endurance. American rails have been used for more than ten years on many of our leading roads, and for the last six or eight years more than anillion and a half tons have been put down, and am inuorant of the first instance of any such complaint as would justify the assertion so boldly made by this ' prominent offi-
cial; indeed, I know exactly to the contrary," cial;' indeed, I know exactly to the contrary.
It every large lot of rails there is a liability to be a few imperfect ones, from flaws in the ingot or from mechanical defects which cannot be detected by the closest and most
careful inspection, but these imperfections usually careful inspection, but these imperfections usually disclose
themselves during the first few months' service. This is equally true of English as well as American rails. The number of rails so failing within five years is so inconsiderable that the guarantee has never been considered any great hardship to manufacturers. If the utmost life of American
rails is limited to five years, as asserted by a " rails is limited to five years, as asserted by a " prominent of-
ficial," the New York Central might have its road kept con.
says:
"I am not aware that Mr. Vanderbilt has ever asked for twelve years' guarantee from American makers, or even
asked from them, certainly not from very many of them, at what price or on what terms they would supply his wants. His purchase of these foreign rails would seem to have some other motive than the
While for credence.
While the indications are that the immediate interests of the Central Railroad may not have been the controlling ele ment in determining this transaction, the makers of American steel rails are still left under the burden of a serious implication. It is not sufficient for them to deny the al leged inferiority of their rails. The charge must be dis proved by specific and abundant evidence. The New York Central road is not the only road that has a large traffic, or that has tried American steel rails.
If other roads, under severe tests, have found American rails as durable as the English, their testimony would just now be of great value. If, as Mr. Earnshaw admits, they have not worn so well as English rails, it is the duty of the American makers to explain the cause, if they can, and remove it.

A Remarkable conflagration-The river between NEW YORK AND BROOKLYN SET ON FIRE.

One of the important receiving stations of the Standard
Oil Company in this city is near the foot of Sixty-fifth street on the bank of the Hudson River. Here the company hav tanks for the storage of oil, which is brought directly into their premises in cars that come to the city over the New York Central and Hudson River Railway. From this station the crude oil is in part distributed in barrels to the shipping along the river, and to other points, but a large portion is transferred through a pipe line directly to the re finery at Hunter's Point, in Brooklyn. This pipe line extends under the streets of New York across the city to the East River, and thence under the bed of the river to the Brooklyn shore. The river at the point where the pipe line crosses is
about three quarters of a mile wide, a large and splendid about three-quarters of a mile wide, a large and splendid
stream, usually covered with sailing and steam vessels en. stream, usually covered with sailing and steam vessels encity like New York. The entire length of this oil pipe line is three miles, the oil being forced through it from the Hudson River to Brooklyn under a strong pressure, by means of a son River to Brooklyn under a strong pressure, by means of a
large Blake steam pump. On Sunday morning, April 20th, at a time when the river happened to be comparatively free from vessels, an appearance something like a water spout
was observed on the river near the Brooklyn side. The water rose high up in the air and fell in graceful showers all around. In a very short time the surface of the channel was covered with oil, which naturally spreads rapidly on the surface of water and which was carried down stream also non. ebbing tide. This explained the unusual phenome non. The oil pipe had burst at the bottom of the river and the oil was lowing in a big stream to the surface. Several little boys who were playing around the dock noticed the oil
and promptly threw some lighted matches into the river. The oil ignited, and in a few seconds the whole river front was ablaze, and the dock also caught fire. The boys ran
away rather more scared than happy. The fire engines were sent for as quickly as possible. Three responded. The fire on the dock, in rear of which are gas works, was quickly extinguished, and in about a quarter of an hour there was no appearance of fire on the river. But just as the firemen were about to leave, flames shot up here and there along the channel. Now and then, fanned by fitful gusts of wind, they lengthened enormously, and swept the fences and trees along the river front, scorching them here and there.
The oil continued to bubble up from the leak at the bottom of the sea, and the flames in that vicinity rose to a great height. It was not until all the oil in the pipe had risen to the surface and had mostly been consumed that the flames died out. This was fully four hours after the outbreak. The quantity of oil lost must have been very great. Beyond the scorching of a few vessels, the fences, trees, and the partial destruction of the lock, there was no other harm done.

Cleveland to be Lighted by Electricity.

We learn that the authorities of Cleveland, Ohio, have made a contract to light a large portion of the city with the Brush light. The lamp posts, which are very ornamental, and twenty feet high, have all been erected, and it is ex pected that the lamps will be placed in position in a short lighting will be noted with great interest by the public in general and electricians in particular.

Piaster of Paris mixed with equal parts of powdered pumice stone makes a fine mould for casting fusible metals. The same mixture is useful for incasing articles to be sol dered or brazed. Casts of plaster of Paris may be made to
imitate fine bronzes by giving them two or three coats of shellac varnish, and when dry applying a coat of mastic var nish and dusting on fine bronze powder when the mastic varnish becomes sticky.
american industries.-No. 11.
the manufacture of spool threan
In our last issue we gave an illustrated description of the manufacture of sewing machines; we now present to our readers a description of the manufacture of an article with out which, in its perfect form, sewing machines would be useless. Thread, although one of the smaller articles of manufacture, is the foundation of an immense industry, and the processes and machinery by which it is produced have been developed and perfected until it appears that there is little room for further improvement.
The primitive method of spinning cotton thread was to attach a bunch of the carded cotton to a forked stick called distaff, and, holding it under the left arm, the cotton wa drawn out and twisted with the left fore finger and thumb;
the size and quality of the thread being regulated solely by the size and quality of the thread being regulated solely
the edelicacy of the touch as it passed through the fingers As soon as sufficient length was twisted to reach to the ground, the thread was wound upon a stick called a spindle. In this manner the spinsters of Old England made their thread, and it was not until the time of Henry VIII. that the spinning wheel-which had long been in use in Indiawas introduced into England. After this came the spinning jenny, then the spinning mule, and then a host of machines or various branches of textile manufacture.
Without doubt the manufacture of thread, as conducted at the establishment of Messrs. Clark, may be taken as an example of the best practice. Entering their extensive manufactory, in Newark, N. J., one can but notice, firsf of all, the system, order, and cleanliness that everywhere prevail; the gleam of polished machinery, the hum and flutter of the thousands of spindles, spools, and reels, the ceaseless progression of the material from the raw to the finished statc, convince us that the world must use an enormous quantily fthread, and, while wondering "where in the world" it ail goes to, we are informed that this establishment furnishe only a fraction of the thread consumed in the United States alone
A spool of cotton appears a simple thing, but when it is considered that the thread, which is so even and so strong, is composed of six cords; that the filaments which compose each cord are straightened and made parallel and twisted hat two such cords are united and twisted together, and that three of the double cords are twisted to form a com ete thread it becomes a matter of wonder that it can \mathbf{b} profitably done for the price at which the thread is afforded oo the consumer.
The machinery of the Clark Thread Works is driven by two double Corliss engines of about 500 horse power each, and several smaller engines, the power amounting to about 1,400 horse power. The engines, as well as all of the othe machinery about the establishment, are in perfect order and of the finest quality.
The cotton, as it comes from the bales, passes through machines called pickers, which pick it up loosely, removing burrs, dust, and other impurities by means of a vacuum. From the pickers it passes to the lap machines, where it is similarly treated and well flattened and compactly rolled up into laps preparatory to passing through the carding machines. In the carding machines, which are shown in the upper right hand view in the engraving (front page), the fibers are further cleaned, combed, and broken, and delivered in a narrow unbroken ribbon, called the sliver, to tall cans, in which, by ingenious mechanism, it is coiled. The filled cans are conveyed to the ribbon lap machines, where a number of the ribbons are united in a single lap several times wider than the single ribbon. These laps or rolls are now conveved to the French combers, which, with perhaps the exception of the spooling machines, are the most in teresting of all the machines used in thread manufacture. They are intermittent in their action, and comb out all the short staple, leaving only the long fibers to be worked into the thread. The sliver, as it passes from the combers, looks delicate and gauzy, more like a spider's web than anything else. The machine handles it delicately, and brings it together in a narrow ribbon and coils it in the cans. This operation, which is represented in the upper left hand view in the front page engraving, is of the greatest importance, as it remaves the short fibers and arranges the long ones to the best advantage.
The ribbon is next drawn and twisted in the drawing frames, and is afterward further twisted in two separate machines before spinning, and is wound upon large spools, which are carried to the spinning mules, shown in one of the lower views in the engraving. In each of these machines there are several hundred spindles, which revolve very slowly as they are carried forward by the carriage in wind ing the thread on the spindle, but revolve with great speed as the carriage draws back in the operation of spinning. The spinning mules are entirely automatic in their action the attendant has only to repair the broken threads, of which there are not many. From the spinning mules the cops go to the cop winders, where two strands are wound together on a single spool. These two strands are twisted in the machine shown in the smafl circular figure. The bobbins re volve at a speed of about 5,000 revolutions per minute, and arrangement.
Three of these double strands are twisted together, mak ing the well known six-cord spool cotton, for which this company are justly celebrated.
The spools from the twisting machines are conveyed to the reeling machines, shown in the large central figure,

