carrying light goods is to suspend them from the end of a piece of split bamboo laid across the shoulder. Further, a joint of this material serves as a holder of many articles, as pens, small instruments, and tools, and as a case in which little articles are sent to a distance; a joint of it also answers for the purpose of a bottle, and is used for holding milk, oil, and various fluids, a section of it constituting the measure for liquids, in bazaars. A piece of it, of small diameter, is used for a blowpipe to kindle the fire, and by gold and silver smiths in melting metals. It also supplies the place of a tube in distilling apparatus. These, of course, comprise but a portion of the uses to which this valuable material is applicable, and it opens up a wide feld formanufacturing industries.

new agricultural inventions:

A gang plow in which the tongue and axle frame are combined with a pair of plow beams, connected adjustably at the rear end and pivoted to the tongue in front, so that it may be readily operated, has been patented by Mr. L. M Kelly, of Litchfield, Ky.
An improved cultivator fender, which may be used with either a one horse or two horse cultivator, has been patented by Mr. Andrev Simmons, of Green Vale, and Michael Simmons, of Lena, III. It is designed to prevent the earth from being thrown upon the plants by the cultivator plows.
Mr. R. D. Norton, of New Sharon, N. J., has patented an improved pulverizing disk harrow, in which some of the details of the machine are perfected so that it is rendered more durable and effective
An improved machine for the distribution of liquid or powdered poison upon cotton or other plants has been patented by Mr. Thomas B. Taylor, of Mount Melgs, Ala. It consists mainly in a perforated cylinder mounted on bearings supported by a plow beam, and capable of turning so as to sift or sprinkle the poison on the plants.

Ozone in Relation to Health and Disease. Henry Day, M.D., in an address delivered before the Congress of the Sanitary Institute of Great Britain, gives the history of the discovery of ozone, and notices the successive theories of Schỏenbein, Williamsom, and Odling concerning ts nature. He then describes the pathological action of this form of oxygen, and reveals facts which will probably startle those who believe ozone and "ozonized" articles of food or of medicine to be universally beneficial. He describes he death of animals after exposure to ozonized air under ymptoms closely resembling those of acute bronchitis. He considers that if present in excess in the atmosphere, catarrb, bronchitis, and even pneumonia would be its natural results. Whether there is ever such an excess as would involve these consequences is an open question. He feels also bound to admit, according to the researches of Dr. Moffat, that during " ozone periods," apoplexy, epilepsy, vertigo, neuralgia, and diarrhea are more frequent. Further investigations in this direction are imperatively needed, but what has been said may serve as a caution to dabblers in science who keep an ozone apparatus in action in their sitting-rooms as a prophylactic against diseases in general.
The absence or the deficiency of ozone has been, perhaps, too hastily placed in connection with zymotic disease. But that such a connection exists in case of cholera can scarcely be doubted. The author shows that in 1864, in the Bombay Presidency, cholera was in its greatest ascendency when ozone was either wanting or at its minimum; that the disease showed a most marked decrease when ozone was registered as increasing, and when at its maximum the epidemic ceased altogether if the maximum continued for any time. Similar results were obtained at Strassburg in 1854 and 1855, indar results were obtained at Strassburg in 1854 and 1855,
and the experiments of Mr. Glaisher and of Dr. Moffat give confirmatory testimony. Whether there may be other causes in operation in addition to deficiency of oxygen is still doubtful. As a disinfectant the author pronounces it the best, safest, and least objectionable known. That it may kill disease germs-whatever they may be-is no doubt highly probable from its action on the superior animals; but the question arises, pertmently says the Chemical Nevos, Which will be killed first? and adds, We are somewhat surprised at finding in this address no reference to the dell known and justly admired work of Dr. C. B. Fox.

Varying Veloctty of Sound.

Some interesting experiments have been made at the U. S. Arsenal at Watertown, Mass., to determine whether the velocity of sonorous waves is or is not affected by variations in intensity and pitch. A 6 lb . brass field piece was placed in the midst of a large level field, and behind it, at distances ranging from 10 feet up to $\mathbf{1 1 0}$ feet, were placed a series of membranes electrically connected with a chronograph, which would thus give the instant at which the sound wave from the gun met each membrane in succession. The experiment was repeated many times and always with the same result. It was found that immediately in the rear of the cannon the velocity of sound was less than at a distance, but that going further and further from the cannon the velocity rose to a maximum considerably above the ordinary velocity, and then fell gradually to about the ordinary. When the gun, however, was pointed at right angles to its first position it was found that the position of maximum velocity was brought nearer to the cannon, and if the gun had been turned in the direction of the line of membranes, which was impracticable, it is thought the retardation which produced the first low velocities would probably have become an acceleration.

The heaviest charges of powder caused the greatest deviations from the ordinary velocity. The experiments, accordingly, prove that the velocity of sound depends to some extent on its intensity, and that experiments on the velocity of sound in which a cannon is used contain an error, probably due to the bodily motion of the air near the cannon. Evidently a musical sound of low intensity must be used for a correct determination of the velocity of sound.

JAPANESE MIRRORS.

Mr. R. W. Atkinson, of the University of Tokio, Japan, communicates to Nature the following interesting account of these curious mirrors.
A short time ago a friend showed me a curious effect, which I had previously heard of, but had never seen. The ladies of Japan use, in making the.. $\because^{21 n t}$ a small round mirror about $1-12$ to $1 / 8$ inch in thickness, maue u. - ' '7d of speculum metal, brightly polished and coated with mercury. At the back there are usually various devices, Japanese or Chinese written characters, badges, etc., standing out in strong relief, and brightly polished like the front surface. Now, if the direct rays of the sun are allowed to fall upon the front of the mirror, and are then reflected on to a screen, in a great many cases, though not in all, the figures at the back will appear to shine through the substance of the mir ror as bright lines upon a moderately bright ground.
I have since tried several mirrors as sold in the shops, and in most cases the appearan
I more less distinctness.
I have been unable to find a satisfactory explanation of this fact, but on considering the mode of manufacture I was led to suppose that the pressure to which the mirror was subjected during polishing, and which is greatest on the parts in relief, was concerned in the production of the fig ures. On putting this to the test by rubbing the back of the

japanter magic marror.

mirror with a blunt pointed instrument, and permitting the rays of the sun to be reflected from the front surface, a bright line appeared in the image corresponding to the posi tion of the part rubbed. This experiment is quite easy to repeat; a scratch with a knife or with any other hard body is sufficient. It would seem as if the pressure upon the back during polishing caused some change in the reflecting sur face corresponding to the raised parts whereby the amoun of light reflected was greater; or supposing that, of the light which falls upon the surface, a part is absorbed and the rest reflected, those parts corresponding to the raised portions on the back are altered by the pressure in such a way that less is absorbed, and therefore a bright image appears. This, of course, is not an explanation of the phenomenon, but I put it forward as perhaps indicating the direction in which a true explanation may be looked for.
The following account of the manufacture of the Japanese mirrors is taken from a paper by Dr. Geerts, read before the Asiatic Society of Japan, and appearing in their Transac tions for 1875-76, p. 39 :

For preparing the mould, which consists of two halves put together with their concave surfaces, the workman first powders a kind of rough plastic clay, and mixes this with levigated powder of a blackish tuff-stone' and a little charcoal powder and water, till the paste is plastic and suitable for being moulded. It is then roughly formed by the aid of a wooden frame into square or round cakes; the sur face of the latter is covered with a levigated half-liquid mix ture of powdered 'chamotte' (old crucibles which hav served for melting bronze or copper) and water. Thus well prepared, the blackish paste in the frame receives the con cave designs by the aid of woodcuts, cut in relief. The two halves of the mould are put together in the frame and dried
made of clay and chamotte. This box has on the top an opening into which the liquid bronze is poured, after it has been melted in small fireproof clay crucibles. The liquid metal naturally fills all openings inside the box, and consequently also the cavities of the moulds. For mirrors of first quality the following metal mixture is used in one of the largest mirror foundries in Kiôto:

For mirrors of inferior quality are taken:

> Copper
> 100
"After being cooled the melting box and moulds are crushed and the mirrors taken away. These are then cut, scoured, and filed unt $i l$ the mirror is roughly finished. They are then first polished with a polishing powder called to-no-ki, which consists of the levigated powder of a soft kind of whetstone (faishi) found in Yamato and many other places. Secondly, the mirrors are polished with a piece of charcoa and water, the charcoal of the wood, no-no-ki (Magnolia hy poleuca) being preferred as the best for the purpose. When the surface of the mirror is well polished it is covered with a layer of mercury amalgam, consisting of quicksilver, tin, and a little lead. The amalgam is rubbed vigorously with a piece of soft leather, which manipulation must be continued for a long time until the excess of mercury is expelled and the mirror has got a fine, bright, reflecting surface.
Professors Ayrton and Perry give the following explanaion of the phenomena of the Japanese mirror:

The magic of this Eastern mirror arises not, as has been supposed, from a subtle trick on the part of the maker, nor from inlaying of other metals, nor from hardening of portions by stamping, but from the natural property possessed by certain thin bronze of buckling under a bending stress so as to remain strained in the opposite direction after the stress is removed. And this stress is applied partly by the megebo, or 'distorting rod,' and partly by the subsequent polishing, which in an exactly similar way tends to make the thinner parts more convex than the thicker."

Linting a Rallway Bridge without Stopping Trafilic.
A dispatch from Easton, Pa., dated April 10, states that the cleverest feat of engineering ever attempted in that re gion has just been successfully carried out. It seems that, owing to their immense weight, the iron shoes, in which rest two of the spans of the long bridge of the Lehigh Valley Railroad, had sunk about an inch, throwing the bridge ou of grade. The inside masonry of the pier being less solid than the outer casing, it was evident that the depressio would continue; accordingly an iron casting, 12 feet long, 3 feet 3 inches wide, and 3 inches thick, and weighing 7,000 pounds, was placed under the spans to elevate them, the spans being raised for that purpose by hydraulic jacks. The spans weigh 180 tons each. The spans were raised, the ma sonry redressed, the castings placed in position, and the spans lowered, without the stoppage of a single train.

A Large Steel Bridge.

The five span steel railway bridge over the Missouri River at Glasgow, Mo., is the first large bridge in this country built entirely of steel-from nuts to girders. The American Bridge Company built it of steel manufactured by the Edgar Thompson Bessemer Steel Works, but the steel was made by the A. T. Hay process. This consists of a decarbonizing fol lowed by a recarbonizing of the iron, by whichmuch greater tensile strength and elasticity are secured. This kind of stee allows of the construction of a much lighter bridge than i made of wrought iron, and is not affected by frost or cold weather.

Erratum.

In the description of Messrs. Pew \& Wearts' carbureter, in our last issue, there is an obvious error in the statement of the economy of the apparatus. It should read: The gas meter registers one foot per hour for each burner, instead of the usual six feet, or only one hundred and twenty-five feet during five tests of five hours each, as compared with seven hundred aud fifty feet, the amount usually consumed.

Importance of Patents Abroad.

The American Consul at Verviers, Belgium, in a dispatch to the Department of State, recommends American inven tors to procure patents for their inventions in Europe a well as in the United States; that the drawings in the Scien tific American are extensively copied in Europe, and American inventions are thus reproduced with no profit to the inventors.

The Mexican Exhibition.-At the end of March 600 mechanics and laborers were engaged on the Exhibition Building, which was making rapid progress. Señors Riva Palacio and Sebastin Camacho are reported to have offered to advance the Government a loan of $\$ 200,000$ toward com pleting the Exhibition Building at an early day.

Ir is said that the oil that exudes from orange peel when bent between the fingers, will check the progress of carbun cles in their incipient stage. Perhaps the oil may also be useful for other cutaneous eruptions.

