## THE SWEEPSTAKES PLANER AND MATCHER.

Good judges of mechanical design will appreciate the well-balanced, light, yet strong construction of the efficient planer and matcher illustrated in the accompanying engraving. With a weight of from 2,100 to $2,500 \mathrm{lbs}$., according to capacity, it contains all that is essential to a first class machine. It offers also several novel features of great merit, among them its solid forged steel head and steel matcher spindles, running in the Ellis patent journal boxes shown in the lower right hand corner of the engraving. By means of this improvement the journal can be kept central and tight until the box is worn out, thus preventing any tremble and jar of the shaft, a very important gain where smooth work is required. The machine can be quickly and easily changed to a surfacer, simply by loosening two nuts and removing the matcher head, when the spindles will swing below the surface of the table. When required again the spindles can be swung into position without measuring or other delay. A shaft, crossing the machine behind the matcher heads, carries a head with cutters, to be used in making Colifornia rustic siding, beaded ceil fornia rustic siding, beaded ceiling, small mouldings, and the
The machine has four $41 / 2$ inch feed rolls, connected with expansion gear, securing a powerful feed of $4 \bar{j}$ feet a minute. It has two pressure bars, one in front and one back of the head; and the rolls are held down by forged stecl coil springs. The
long table makes room for the long gauge indispensable in a good flooring machine. The countershaft is heavy, and is fitted with tight and loose pulleys 10 inches in diameter and 6 inches face. It should run 900 revolutions a minute.
Further information, if desired, may be had of Messrs. Rowley \& Hermance, Williamsport, Pa., who also manufacture a large variety of other wood-working machinery.


THE SWEEPSTAKES PLANER AND MATCHER.
possesses more than ordinary interest. The engravingshows The naturalist of the Westminster Aquarium has been ex- the dock carrying one of the Russian circular ironclads, perimenting on a young seal, training it to perform many the Novgorod. This ironclad is 101 feet in diameter, and curious tricks. A London exchange says the seal now goes weighs 2.450 tons. The dock has also been successfully through a performance which includes plucking the strings used for raising the other ironclad, the Vice-Admiral Popoff of a guitar, beating a tambourine, climbing a flight of steps, which is 121 feet in diameter, and weighs 3,850 tons.
taking a "header," smoking, or pretending to smoke, a pipe, This dock consists of a series of pontoous, each 72 feet firing a revolver, and drawing a boat to which it is har- long, 18 feet deep, and 15 feet broad, placed 5 feet apart, and nessed. $\left\lvert\, \begin{aligned} & \text { connected with a pontoon, } 280 \text { feet long, } 44 \text { feet } 6 \text { inches } \\ & \text { coner }\end{aligned}\right.$
The performance to meet public taste is made more sensa- high, and 12 feet broad. The structure resembles a comb,
seal enters eagerly into the fun, with a keen eye on the fish given to it now and then in its performance, is a good illustration of how these animals can be educated.

## NICOLAIEFF DEPOSITING FLOATING DOCR

The accompanying perspective view, which we take from Enyineering, represents the Nicolaieff floating dock, a structure which, from the novelty and boldness of its design, , the smaller ones th teeth. An outrigger connected with the larger pontoon opposes aud counteracts the oscillation of the smaller ones. The smaller pontoons are submerged by alowing the water to enter, the vessel is floated overthem, when the water is pumped out by ma chinery carried by the longe pontoon. The keel takes its bearing on the blocks, and the bilge blocks are hauled into place by chains in the usual manner This dock appears to have me very successfully the difficulty of dealing with exceptionally broad vessels. It can deal with vessels of 150 fect beam, and the system upon which it is constructed is such that it can be very readily extended to take ny greater widths or length required. It is capable of de positing the vessels lifted by it on fixed stages erected along the shore. In these days when there are decided indications of rowth in the beam of our iron clads, this system of dock promises to be of much value as when a dock of this kind is available, the restrictions in width which ordinary graving docks impose are at once removed. The facility with which this system of dock can be extended, and the manner in which the sections of which it is composed admit of variation of arranerement to suit different conditions, are also many points in its favor, and altogether the dock at Nicolaieff deserves to be the forerunner of many others.


THE NICOLAIEFF FLOATING DCCK.

## Rallway Notes.

A locomotive electric light has been constructed in Eng. land for railway use. It consists of a light six horse power four-wheel locomotive, with a dynamo-electric machine attached. Any electric light can be used. When the engine is moving along the line, the electric machine rotates at its proper speed, and when it is necessary to stop in order that the light may be directed on some particular spot, the driving wheels are thrown out of gear by means of the disengaging handle attached to the pinion on the crank shaft, and the machine ceases to be locomotive, while the engine continues to move the dynamo machine at its proper velocity. The engine is furnished with sensitive governors, so that the speed of the dynamo machine may be accurately regulated, which is very important in order to insure a bright and coer
tinuous light. If required, this engine is sufficiently powerful to drive two electric machines. The arrangement is ful to drive two electric machines. The arrangement is
compact, and the engine may be used during the day for compact, and the engine may be used during the day for
pumping, sawing, drilling, or any other purpose for which this type of engine is usuany employed.
The engineers of Europe are watching with considerable interest tbe behavior of the American locomotive exhibited at Paris by the Readıng Railway Company, and since then a working exnibition on the Northern Railway of France. The Continental Gazette states that recently Messrs. Delbec and Bandasalli, of the Northern Railway, accompanied by a party of gentlemen, among whom were Messrs. C. Geshardt and A. Mensier, of the Eastern Railway; Henry Mathicu, of the Midi Railway; David Woeflin, of the Orleans Railway; B. Meissonnier, Inspector-General of Mines; and a number of other eminent engineers, made a journey with it to PersanBeaumont, passing over the heaviest grades and shortest curvatures of the line, and were enthusiastic in their praise of the powerful effort of the engine, and the very great smoothness and isteadiness with which it passed around the hortest curves. Mr. Wootten, the General Manager of the Reading Railway Company, who was also of the party, has since taken the locomotive to Switzerland and Italy, for
the purpose of demonstrating the desirability of anthracite coal for fuel for locomotives in those countries.
The Railroad Gazette discusses the possible displacement of wooden cars by cars of iron. The question of economy, based on relative cost and endurance as determined by actual experience, is figured out as follows, assuming the mileage of freight cars to be 15,000 miles a year, which is about the average on most American roads. From data in hand the cost of maintaining a wooden car at 0.5709 cent per mile is found to be $\$ 85.63$ per year. If it costs 0.0922 cent less to
maintain an iron car, the cost per year would be only $\$ 71.80$, or $\$ 13.88$ less than the cost of maintaining a wooden car. The latter sum is 7 per cent interest on $\$ 197.57$. Let us assume now that a wooden car costs $\$ 450$, and an iron one $\$ 197.57$ more, or $\$ 647.57$, and let us then calculate the cost of service on this basis, and if we leave out of the account the interest on the money expended, at the end of 10 years the wooden car would have cost $\$ 1,306.30$, and the iron car $\$ 1,365.57$. Supposing, though, that the life of the wooden car is 10 years, and that of the iron car 15, then the whole cost of the service per year of the former would be $\$ 130.63$, whereas that of the latter would be $\$ 114.97$. It should be said that these figures are not given as representing anything except the possibility that the economy they indicate may be realized by the use of iron cars.
Germany has 20 locomotive shops, with an aggregate capacity of 1,922 a year. The largest of these, Borsig's, at Berlin, had turned out 3,750 locomotives at the close of 1878 ; the second in capacity ha] made in all 2,600; the third and fourth, 1,700 each; the fifth, 1,250 ; and four others from 90 to 980 each. Speaking of the first named, a German contemporary says: "One of the proudest monuments of the iron trade of Germany, the Borsig locomotive and machinery works, are, it is reported, about to be closed for an indefinite period. For some time past they have had to be kept going out of savings, and this the trustee of the Borsig estate declines to continue to do any longer. The works have been conducted at a loss for so many years in succession that they threaten to swallow up the entire estate. The late Borsig kept the works open for the purpose of finding bread for his numerous workmen, the thought of whose dispersion and distress was painful to him." There are 5 locomotive works
in Austria-Hungary, and 3 in Switzerland, though one of in Austria-Hungary, and 3 in Switzerland, though one of
the latter has turned out no locomotives since 1867 . One of the Austrian works belongs to a railroad company; it has built 1,560 engines, and can turn out from 80 to 100 yearly.
The received opinion, as to the relation between the hardness of steel rails and their wearing capacity, has been that, barring the tendency of a hard steel to be brittle, the harder the rail the better it would wear. Dr. Dudley, Chemist of the Pennsylvania Railroad, finds the experience of that road to be different, and is rather of the opinion that under the conditions of wear to which a steel rail is subjected, namely, rolling friction, unlubricated surfaces, and great weight with small bearing surface, the quality of the metal neces sary to most successfully withstand the disintegrating forces
is best expressed by the word toughness, and not by hardis best expressed by the word toughness, and not by hard
ness. He says: "Some two years ago the Pennsylvania Railroad Company, in view of the unsatisfactory wear it was obtaining from its steel rails, asked to have more carbon put into its rails, with a view of making them harder, to resist wear. Before the increase the limits of carbon for rails to cent. After the increase the limits were from 0.40 to 0.50
per cent, thus securing on the average, perhaps, about a the experiment can be performed successfully at lower temtenth of a per cent more carbon in the steel. Now Mr. W. peratures than $500^{\circ} \mathrm{C}$. if smaller pieces of foilare taken; and H. Brown, Chief Engineer Maintenance of Way, Pennsyl- that other metals, for instance copper and aluminum, covania Railroad, informs me that these rails of higher carbon here to silver in the same manner as platinum, but less strikare giving poorer wear than before the lower limit of carbon ingly.
was raised. This opinion of Mr. Brown is based on his observation of the wear of these higher carbon rails, and on the number of renewals of these rails rendered necessary by the condition of the track." This experience appears to be in harmony with that of the General Manager of the Barrow Hæmatite Steel Works, England, Mr. J. T. Smith, who, as early as 1875, expressed the conviction that, contrary to what might have been anticipated, greater hardness has not con-
duced to the longevity of the rails, and the softer ones show duced to the longevity
the minimum of wear.
In their report for 1878, the Executive Committee of the Western Railroad Associations deprecate any movement to repeal or to seriously impair the integrity of the patent system, and say
We believe
We believe that the gradual and continuous reduction in the rates of fare and freight which has taken place would have been impossible without the economy of the labor-saving and operative devices which invention has furnished. It is evident that while "railroading" is being gradually more and more reduced to an exact though unwritten science, and while its masters are members of a profession that is growing in wisdom and importance, still, that further reduction in fares and freights, which the logic of events will make necessary in the future, is dependent largely upon further improvements wlich the inventive genius shall furnish. It is seriously doubted by some whether invention has not been stimulated too much in some of the arts-as that of agricultural implements. It is, however, difficult to see how the inventor can in any way do too much in the matter of reducing the cost or increasing the facilities of transportation. If, then, it is in any sense good policy for the government, by arbitrary means and the offering of special inducements, to stimulate invention, so much more is it wisdom for trans portation companies to use every proper means toward the me result.
Again, the right of the inventor to his invention, thougb a statutory right, is also a property right, and entitled to respect as such. The spirit which would knowingly deprive an honest, original inventor, or his assignee, of his right, or
of the reward due for its use by another simply because it of the reward due for its use by another, simply because it a patent right, is the same as the spirit which plunders a
railroad corporation simply because it is a railroad corpo ration.

## Labor in New York City.

The Herald is responsible for the following table giving the number of unemployed mechanics and laborers in the city in 1873, the first year of "hard times," and the corre sponding figures for the present time; also the average wages received by each class of workmen then and now.
The Herald remarks that, when it is remembered that the present number of idle men is not far in excess of the average m ordinary prosperous years, it will be understood how encouraging is the prospect for the coming spring season.

|  | -1873 |  | --1879 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Average } \\ \text { wages } \\ \text { per day. } \end{gathered}$ | $\begin{gathered} \text { No.. } \\ \text { nnome. } \\ \text { ploged. } \end{gathered}$ | $\begin{gathered} \text { Average } \\ \text { wage } \\ \text { per axy. } \end{gathered}$ | $\begin{aligned} & \text { No. } \\ & \text { unem- } \\ & \text { ployed } \end{aligned}$ |
| Laborers (all kinds) | ... $\$ 2.00$ | 10,000 | $\$ 1.10$ | 3,000 |
| Carpenters.... | ers 3 3.500 | 2,000 1,500 | 1.75 3 | ${ }_{1}^{1.0000}$ |
| Bricklayers..... | .... 3.50 | 2,000 | 2.25 | 800 |
| Plasterers... | 3.50 | 1,500 | 2.00 | 600 |
| Painters | 3.50 | 1,000 | 2.00 | 800 |
| Roofers. | 3.00 | 300 | 2.00 | 100 |
| Moulders. | 2.50 | 250 | 2.25 | 150 |
| Sawyers ...... | 250 | 50 | 1.90 | 25 |
| Harness makers. | ${ }^{3.00}$ | 50 | 2.50 | 40 |
| Blacksmiths..... | 3.00 | 300 | 2.00 | 100 |
| Longghoremen work) |  | 1.000 | 2.50 | 100 |
| Cabinetmakers | ... 2.55 | 500 | 1.75 | 200 |
| Boxmakers | ... 2.75 |  | 1.80 | 150 |
| Printers.. |  | 800 | 2.00 | 600 |
| Wagonmakers. | . 3.00 | 200 | 2.50 | 100 |
| Brass flnishers . | .$^{3.50}$ | 200 | 2.50 | 50 |
| Engineers .... | . 3.00 | 600 | 2.00 | 400 |
| Ironworkers...... |  | 1,500 | 2.00 | 1,000 |
| Tailors (custom). | ... 4.50 |  | 2.50 |  |
| Jewelers. |  | 50 | 2.25 | 30 |
| Shoemakers....... | ... 3.50 | 600 | 2.00 | 200 |
| Capmakers......... | .. 2.50 | 200 | 1.75 | 50 |
| Cigarmakers . .. | ... 3.00 | ${ }^{500}$ | 1.75 | 300 |
| Weavers.......... | ... 3.00 | 100 | 9.00 | 50 |
| Total. | ...... | .25,400 |  | 11,395 |

The Welding of Metals at Low Temperatures.
Some time ago, in order to estimate the amount of hydro cyanic acid in a solution, Mr. Charles A. Fawsett, of Glas gow, Scotland, precipitated it with silver nitrate. After hav ing filtered and washed the precipitate, he reduced it to the metallic state by heating to the required temperature. Just as he was about to allow it to cool he noticed a small piece of dirt among the reduced silver. In order to separate them he took a thin platinum wire and pushed the silver to one re, but on attempting to take the wire away the silver re tried the following experiment: He took a piece of silver foil, about one centimeter square, placed it in an inverted porcelain crucible lid, and heated it to about $500^{\circ} \mathrm{C}$.; then he brought into contact with it the extremity of a thin platinum wire, and to his astonishment the wire raised the silver from he lid, and it remained in contact when cold.
The silver being so much below its melting point its behavior puzzled him, so he wrote to Sir W. Thomson for an explanation. On witnessing the experiment Sir William pronounced it a remarkable case of "cohesion," the two metals, in fact, "welding," although the temperature wa

A Universal International Exhibition of One.
Signor Louis Josue Raynusso, of Santa Clara Mill, Lima, Peru, proposes a grand universal contest, to take place in Rome, Italy, during the month of October, 1879. His ex perience and study have inspired him with the profound conviction that water power is not so widely nor so wisely employed as it might be; also that he has unequaled plans for obtaining the following results, to wit:
To canalize any waterfall; to elevate the water of any iver so as to employ it in the irrigation of high grounds; to perfect the system now in use for grinding corn and other grain; to modify advantageously the current mode of making bread, biscuits, and vermicelli.
To test the question, he proposes the competition above named, with prizes to be furnished by himself. The first prize of 100,000 francs is offered for the best three plans of works, edifices, and machinery, as follows:
I. Of a large establishment to contain four manufactories, s follows:
1st. A model mill to grind wheat and other kinds of grain, with its proper machinery moved by hydraulic porver, and tores to keep the grain, flour, and bran
2 d . A factory for the manufacture of bread, with all the 3d. A factory for the mantages for this industry.
3 d . A factory for the manufacture of crackers, with the bove conditions.
4th. A factory for the manufacture of vermicelli with the ame conditions.
II. To employ the water of a river, by means of a new system of canalization, in irrigation, and for the factories worked by hydraulic power.
III. A new system to control any fall of water, regulate it, and employ the same as motive hydraulic power in fac tories.
If only two plans among all those exhibited shall equal his, he will pay 50,000 francs: if only one, 25,000 francs. 1 further reward of 2,000 francs is offered for each piece of machinery, either cast, in wood, or drawn, of a new pattern and useful to the mill industry, provided it be superior to those exhibited by him.
Also a reward of 1,000 francs for each improved piece of machinery, either cast, in wood, or drawn, of those actually employed in the mill industry, provided it be superior to those employed by him.

The jury is to be formed from judges selected by the candidates. The contest is open to all the world
The plans of the several candidates will be accepted at Rome by a commission appointed ad hoc, until the 1st day of September, and none afterward.

## Reporting Machine.

Among apparatus which may be called literary aids-writ ing, calculating, and other machines-seen at the Paris Exhi bition, was one which attracted much attention, and which has not yet been introduced into this country. It is known as La Machine Sténographique Michela, the name of its inventor. La Machine Sténographique Michela, the name of its inventor.
The claims made respecting it are very broad. In the first The claims made respecting it are very broad. In the firs
place, it is declared that after a fortnight's practice, any person of ordinary ability can take down in shorthand characters any speech, however rapidly delivered. It is a small in strument, piano like in form, with twenty-two keys, white and black, and the stenographic characters are small and impressed on slips of paper. Signor Michela claims to have classified all the sounds which the human organs of specch are capable of producing, and to have so constructed his are capable of producing, and to have so constructed his is said, German, French, Italian, and Spanish, and it may be taken for granted that English is also included, as the exhibitors announce their intention of introducing the machine into this country. The inventor even believes that his machine will do much towards the realization of that philosophic dream, an universal language. To what extent the hopes of the inventor may be realized, of course remains to be seen, but the machine is certainly highly ingenious, and seems to work satisfactorily.

A New Method of Planting Telegraph Poles.
A new method of planting telegraph poles has been in troduced in Pennsylvania. The ground is staked off at distances of 200 feet apart; a man starts off with cartridges of "electric powder," and with a crowbar in his hand. The bar is driven four or five fect into the ground, a cartridge with a lighted fuse is dropped into the hole, and the man proceeds to the next stake, but before he reaches it the cartridge has exploded, making a cavity as big as a flour barrel in the ground, and a gang of men who follow plant a telegraph pole in the spot. In this way four men will set up 100 to 150 poles per day, and at a cost two thirds less than by the old way.

Simple Mode of Silvering Metals.
Small articles may easily be coated with silver by dipping them first into a solution of common salt, and rubbing with a mixture of one part of precipitated chloride of silver, two parts of potassa alum, eight parts of common salt, and the same quantity of cream of tartar. The article is then washed and dried with a soft rag.

