A NEW FOOT LATHE

It is an important matter for an amateur or mechanic doing work with small tools to procure such implements as will be a source of profit, pleasure and satisfaction, instead of lasting regret that tools of another make were not purchased. Among such tools a lathe is an important item, and once purchased is not likely to be soon exchanged. A lathe which appears to fulfill all reasonable requirements is shown in the accompanying engravings. The chief novelty of this

Fig. 1.-MARSH's CYLINDER bED FOOT Lathe.

lathe is its cylindrical bed, which possesses many advantages which will be apparent to our readers. The bed is 36 inches long, and the head, tail, and tool stocks are bored to fit it.
The head stock is fastened permanently with a set screw. The tail stock traverses the whole length of the bed, and is kept in line with front center by a gronve in the bed, and is readily fastened at any point by turuing a hand screw, which is on. the back side of lathe and not shown in cut. The tool stock also encircles the bed, moves back and forth readily, and rocks to and from the work. It is sawed open on the bottom, and provided with a screw. which is sufficient to hold it at any point by a single turn of the hand. It has a steel mandrel, two steel centers, two T rests, and a tool shelf.

It has a brass box in front journal, and true bored iron bearings throughout. It has a three cone grooved pulley, turned up true, and polished. The balauce wheel is turned and grooved to correspond with cone pulley, and is weighted to counterbalance the treadle. The crank shaft runs the whole length of lathe, resting in Babbitted journals, and has a crank on each end, thus avoiding any unequal strain upon the frame, and securing steadiness. It runs lightly and frcely, with high speed.
This lathe has three useful attachments: a circular saw attachment, a bracket moulding device, and a scroll saw. The circular saw attachment, shown in Fig. 2, is easily applied, and the table, which is a light iron one, dressed up true, is supported by a standard set in the tool stock, and admits of being rocked and tipped so as to saw any bevel desired. It has two light running metal gauges for slitting and cutting off.
The scroll saw attachment (Fig. 3) is very simple, and use. ful for sawing all kinds of scroll and fret work. It is readily attached or detached without pulling the lathe in pieces. The driving attachment of the saw hasa perpendicular stroke. which is important in the perfect working scroil saw. The spring and tension are firmly attached to the tail stock without the removal of a bolt or screw. The table tilts 47° without losing its central position, and the swing around under the arm is 25 inches.

Fig. 2.-Lathe with circular saw attachment.
The attachment shown in Fig. 4, for moulding and ornamental brackets and other scroll work, adds, with very little expense, a very desirable feature to the foot lathe. The standard of the table is threaded, and is adjusted up and down by turningit around. The capacity of the cutter is such as to follow the scroll saw into very delicate points, and open and mould them so as to give the work a more open and light
as well as a more ornamental appearance. The cutters have double cutting edges. and cut as well when revolving one way as the other.
This lathe is manufactured under the recent patent of E. A. Marsh, by the Battle Creek Machinery Company, Battle Creek, Mich., from whom further information may be obtained.

Becent Engineering Inventions.

Mr. Erastus B. Kunkle, of Fort Wayne, Ind., has patented an improved Gauge Cock for Steam Boilers, which consists of a tube having its upper end closed by a nut, through which the valve stem passes, and provided with a vacuum chamber between the nut and the discharge pipe, for preventing the steam or water from passing through the threads of the nut and scalding the operator. It has a valve seat at its inner lower end, as near as possible to the boiler, leaving no space for sediment or scale to collect and clog the valve.

An improvement in Drilling Machines for Artesian and other Wells has been patented by Mr. Jesse Button, of New York city. The object of this invention is to construct the, framework and machinery used in boring artesian and other wells in a compact and convenient form, for saving labor and space, and to enable the machine to be conveniently moved from place to place.

A NEW BENCH PLANE.

The accompanying engraving represents an improved bench plane, recently patented by Mr. Patrick Gallagher, of Eureka, Nevada. In Fig. 1 the side of the plane is broken away $t_{\text {© }}$ show the internal constrnction, and Fig. 2 is a detail view of the cap supporting devicc.
The improvement is applicable to either a jack plane, fore plane. or jointer, of wood or iron.
The iron or bit, B, is screwed by a clamp screw in the body of the plane, A, forming a small angle with the bottom of the plane, and it is held in position near its cutting edge by the cap, C , which is pivoted on a pin that runs transversely through the plane. The position of the cap above its pivot is pressed forward by two strong springs that are

GALLAGHER'S PLANE. ongitudinal wire rails.
the body of the splint, and, as a larger number of splints can be cut from a given quantity of wood, it follows that for purposes of transportation a given number of splints can be packed in a smaller space.
An improvement in Adjustable Sieves has been patented by Mr. John Dildine, of Milton, Pa. The object of this in vention is to furnish an improved sieve for sifting flour,

Fig. s.- hcioll baw attactment.
meal, seeds, and other things requiring to be sifted or separated. It is so constructed that it may be readily adjusted to make the meshes smaller or larger, as may be required.
Mr. Henry Hardick, of Liberty, N. Y., has. patented an improved Fence. This invention consists in a metallic post having an anchoring cross bar or foot cast upon its lower end, and buttons upon one of its vertical sides, for the at tachment of the wire rails; an intermediate stay post is also provided, which anchors a vertical cross tic connecting the

Mr. Louis R. Sassinot, of New Orleans, La., has invented an improved Portable Furnace. This invention is designed for portable clay furnaces to provide a basket frame that will at the same time serve as a permanent support.
Mr. Simon H. Wiesedeppe, of Seneca, Kan., has patented an improved Animal Trap, which is simple in construction, inexpensive, and reliable, catching the animal and holding him securely without hurting him, and without alarming other animals that may be near

Mr. Heinrich Baum, of Höchst-on-theMain, Germany, has patented an improvement in Coloring Matters to be used as Dyes. This invention consists in manufacturing red, yellow, and brown colors from the two disulphobetanaphtholic acids by mea:ss of diazo compounds of xyloidine.
Mr. Benjamin Landon, of Canton, Pa., has devised an improved Mouth Piece for Mail Bags, that can be easily and quickly opened and closed, and that will remain supported by n cross biu, D, fitted to slots in the sides of the open when matter is being taken from the bag without beplane. These springs keep the cover down on the lower ing held, but at the same time can be securely closed and end of the bit or iron, holding it firmly in place. As the locked.
cutting iron lies more nearly flat than in ordinary planes it A Ilose Cart, which may be used to transport hose from will make a smoother surface, and it is more easily adjusted place to place, and in which the motion of the cart is made than irons fastened with a wedge in the usual way: \quad available for winding or unwinding the hose rapidly without

New Inventionn.

Mr. Jonathan Miller, of Trenton, N. J., has patented an improved combined Urir and Water Bottom. This is a stoneware receptacle for beverages, provided with a water bottom having communication with two tubes formed upon the outside of said urn, into one homogencous piece therewith.
Mr. Eliot S. Hunt, of Elizabeth, N. J., has patented an improved Gate Hinge, constructed so that the gate when clossd may be in line with the fence, and will allow the gate to be swung back against the fence without straining the hinges.
Mr. Francis Kcil, of New York city, has devised an improvement in that class of Cylinder Latch Locks which cannot be opened from the outside of the door without its own especial key. It is simple in construction and not liable to get out of order.
Mr. John S. Birch, of Orange, N. J., has fatented an improved Gun Wiper, having a novel device for connecting the wiping head to the rod, whereby the variations in the sizes of the screw shanks of different heads will not interfere with connecting different heads with the same rod.
An improved Device for Forcing Air into and through the Water contained in Wells, cisterns, tanks, and other vessels to purify it, has been patented by Mesars. Jerome S. Higgins and Riverious T. Higgins, of California, Mo. Mr. John H. White, of Huntsville, Ala., has patented an improved Match Splint, which is triangular in form. The advantages claimed are a saving in material, producing with a minimum expenditure of material a strong splint. The sharp angles of the splint afford a ready and effective medium for rapidly communicating the flame from the head to
straining it, has been patented by Mr. John Wilz, of Santa Cruz, Cal.
Mr. Andrew Sheridan Burt, of Omaha, Neb., has patented an improved Tent, having a double row of eyelets or grommets along the edges of the sections of canvas which form

Fig. 4.-BRACEET MOULDING ATTACHMENT.
the ridge, and having flexible knotted chain loops adapted
Mr. Paren England, of Lincoln, Neb., has devised a combined Sash Lock and Weather Strip, designed to both lock the sash in any position, and at the same time totightly close the joint between the sash and the framing, to prevent the entrance of cold air, dust, or snow,

Theory and Practice

At a receat meeting of the California Academy of Sciences, Professor Joseph Le Conte remarked as follows: There is a common, deeply rooted prejudice in the popular mind-and it seems to be affecting even scientific men, on the one side, as well as practical men on the other-that there is a kind of antagonism between theory and practice.
Now, so far from this being the case, a true theory is indissolubly connected with a true practice. There is an indissoluble marriage bond between them. It is even closer than this: it has the relation of spirit and body. Science is a complex web, woven warp and woof; the warp is scientific theory, the woof is the material derived from nature. It is impossible that one should exist apart from the otber. Every intelligent buman action, particularly of the complex kind, is necessarily guided by theory. And this is the true difference, in fact, between buman activity and ordinary animal action. Human action is the most complex, and it is always guided by theory. The only difference between good practice and bad practice is that one is guided by good theory, and the other is guided by false or bad theory. But all buman action which pretends to be intelligent or rational, is guided by some theory, good or bad.
There is, I admit, a kind of theorizing, a spirit of theorizing, and a theorctical babit of mind, which is destructive of good practical work. But it is equally destructive of true science also. I refer to that theorizing upon an unsubstantial basis, that theorizing merely for the sake of theorizing, and merely for the pleasure of the intellectual activity of theorizing-merely for the self-complacent contemplation of the beauty of the theories that we create out of our minds. In this case the whole web, woof and warp, is woven out of the buman mind, without the material being furnished to it by nature. It is like castle building in the air, unsubstantial and resting upon a cloud; beautiful it may be to contemplate, but rapidly disappearing before the sun. It is like spiders' webs, woven out of its own bowels, both warp and woof; beautiful and intricate in its structure, and glittering with the dew in the early morning. but quickly brushed away from the path of progress. This kind of theorizing is equally as fatal to true science as it is to practical work.

This kind of theorizing is what we would call speculation. Now speculation bears the same relation to true theorizing in the world of science, which speculation bears to legitimate enterprise in business. As speculation in the ficld of business is prostrating to true enterprise, and througb it prostrating to the true prosperity of the community, even so speculation in the realm of science is destructive to true theorizing, and therefore destructive to real practical work.
But as enterprise is the basis upon which all legitimate industry rests, and must inevitably rest, and the whole prosperity of society must also rest with it, even so it is upon sound, cautious, inductive theorizing that the whole progress of science and also of sound practical work is based. Science is the open foe of speculation in both fields. Science is the fast friend of legitimate enterprise and legitimate industry, also, in both fields.

The Evaporation of Molsture trom Leaves. An exbaustive study on the physical functions of leaves bas recently been published by Professor J. Boussingault, of Paris, in which the phenomena connected with the absorption and transpiration of leaves are treated at great length. Among others, numerous experiments were made on the difference in evaporation during the day and nigbt. Those carried out with the leaves of the grape vine gave the following bourly averages per square meter of foliage: in sunshine, 35 grammes (560 grains); in shade, 11 grammes (176 grains; during the night, 0.5 gramme (8 grains). The trellis on which the vine was trained was 39 inches bigb and 125 feet long, and presented a surface of 406 square feet of foliage. In sunny weather this was found to lose by evaporation in the course of 24 hours, 120 lbs . of water, and nearly half of that amount during cloudy weather. To give an idea of the enormous amount of aqueous vapor dissipated by plants in the sunshine, calculation showed that an acre of beets could lose in the course of 24 hours between 20,000 and $23,000 \mathrm{lbs}$. Anotber experiment made with a chestnut tree 35 years old showed that it lost over 16 gallons of water in the course of 24 bours. The structure of the leaf, however, containing 70 to 80 per cent of water, and possessing a thickness frequently of not more than four-thousandths of an inch, the question might occur why the evaporation is not much more rapid. The answer to this is found in the peculiar structure of the tissue forming the epidermis, designed especially to rooderate the transpiration. In order to observe the remarkable retentive power exercised by this epidermis, one may expose for a few bours to the sun two cactus leaves of the same superficies, one of which has been deprived of its epidermis. In the case of the latter the evaporation will bc about fifteen times as rapid as in the other. fruits, which prevents an evaporation that would be otherwise too rapid. An apple, for instance, deprived of its skin loses 55 times as much water as a whole specimen in the same time. The physiological energy of leaves is notably lessened by losses resulting from rapid evaporation. Thus an oleander leaf, containing 60 percent of water, when in troduced into an atmospbere containing carbonic acid, de composed 16 cubic centimeters of this gas; one containing 36 per cent decomposed 11 cubic centimeters, and one con taining but 29 per cent was without action.

IMPROVED MOSICAL CONDENBER.

Some time ago Mr. Varley constructed an apparatus, Some time ago Mr. Varley constructed an apparatus,
called by him the "' musical or singing condenser," and the same is now being exbibited in London and attracting general attention. The apparatus, like so many others of similar character, is too complicated and incomplete for practical purposes. It consists of the receiver, the transmitting apparatus, and the condenser. The latter, K, is composed of a pile of leaves of paper and tinfoil, following alternately; the pairs $2,4,6$, etc., are united tngetber at one is inclosed by copper frames, D D', supplied with screws to connect the wiics. The sheets may be firmly compressed the operation not being disturbed thereby in the least.
The receiving and transmitting apparatus consists of a sort of telephone, E . The place of the diaphragm is filled by a sheet of metal foil, L L , in the center of which is fastened a cylindrical piece of carbon, G. Against the latter is placed a second carbon cylinder, H , resting on a wooden crosspiece, AB. fastened at A to one wall of the case, B, by means of a regulating screw, V, to the other wall. A spring, R, extending across the board, A B, imparts to the latter a certain degree of elasticity, which is necessary to insure success.
The metal sheet receiving the sound is connected with one of the poles of a battery, consisting of six Leclanche cells; the lower carbon cylinder is connected with the primary belix of the induction coil, M, which connects on its part with be other pole of the battery. Finally the two poles of the secondary belix of the
D^{\prime}, of the condenser.

The secondary helix of the coil consists of twenty layers f No. 32 wire, well covered with silk; the primary helix consists of five layers of No. 16 wire. The length of the coil does not exceed $2 \frac{3}{4}$ inches, and the core is $3 / 8$ inch thick.
The receiving and transmitting apparatus must be regu lated by experimenting. The two carbon points, when at rest, should not touch each other, but must be brought into contact by the slightest vibration of the metal sheet. The right position may be determined as follows: When the same note is repeatedly sounded into the collector, the carbons may be approached till the sound is distinctly reproduced. When three notes, sounded in succession into the collector, are plainly beard from the condenser, the apparatus may be considered sufficiently well regulated. The meloly must be sung into the receiver while the mouth is placed as near as possible to the entrance. Voices resembling the sound of a flute are most easily reproduced.

The apparatus may be used in the same way as Edison's telephone. When it is used as a micrephenic receiver, the carbon points must be brought into contact.-- L^{\prime} Electri.

Natural History Notes.

An Aquatic Fern.-Professor D. C. Eaton, in a communication to the Bulletin of the Torrey Botanical Club, announces four additions to the fern flora of North America. These are all tropical species, and were detected in Florida. One of them, Ceratopteris thatictroides, is one of the most peculiar of ferns, and was discovered growing in the waters of Prairie Creek. It is as truly an aquatic plant as pickerel weed (Pontederia), or burr reed (Sparganium), and has been found in still or slowly moving waters in most tropical and many sub-tropical regions. It occurs in several of the West Indies, in Mexico, New Granada, and Brazil, and in Africa, Madagascar, India, Java, Hong Kong, Australia, etc. The sterile frond varies from a perfectly simple leaf to one which is twice or three times pinnate; the simpler ones are floating, and are produced early in the season, and the more compound fronds come later, and are emergent. The veins are everywhere finely reticulated. The fertile fronds have very numerous linear, or somewhat podlike segments, with the margin reflexed to form a broad and continuous membrana$\left\lvert\, \begin{aligned} & \text { ceous involucre. The sporangia are scattered on the backs }\end{aligned}\right.$
of the veins, and are nearly globose in form, and are more variable in respect to the ring than in any otber fern. This rgan is sometimes entirely wanting; at other times it is composed of a few obscure joints; and again it is broad and nearly complete. So variable is this fern that at least four gencra and two suborders have been found for its reception; and, though Hooker placed it at the end of the Pterider, its proper position among ferns is by no means yet settled. Up to the present but two sterile specimens of this curious plant have been found, but it is hoped that ere long the discoverer, Dr. Gurber, may be successful in his search for fruiting fronds.
Embryology of the Gar Pike.-The gar pike (Lepidosteus) being one of the few living survivors of those vast extinct orders of geologic ages, it bas been considered especially important by naturalists that means should be taken to compare its embryology with that of otber modern fisbes in order that the structure of past races might be more fully known, and more light thrown on modern questions of evoution. As much as this knowledge bas been needed, no one had been successful in raising the young of the gar pike till ast summer, when Mr. Alexander Agassiz accomplisbed it. The results of his observations are recorded in a paper read before the National A cademy, in this city, during November. The gar pike ascends the St. Lawrence in May, and about the 20th lays its large viscous eggs, which stick fast in an solated way to whatever they bappen to alight on. The eggs look very much like those of toads, baving a large outermembranc and a small yolk. Mr. Agassiz's assistant brought to Cambridge about 500 naturally laid eggs, all but thirty of which were destroyed by mould. The young began to batch in six days, and Mr. Agassiz began his studies. the misfortune to the eggs preventing any examination previous to the birth of the fish. He found that the little gar pikes were not so different from the young of the bony fisbes as be expected. He did not make out the development of the lung; but, judging from external cbaracters, the difference is small. Connection with the sbarks was exbibited in the similarity of the branchial arches, and by the presence of the lateral fold in which the pectoral fins are formed. The manner in which the tail is developed was found to be very like what takes place in the bony fishes. Among the ganoids the dorsal cord is at first straight, then it assumes a slight curve upward at the extremity, and finally there appears, underneath, the beginning of a lobe pointing toward the complete beterocercal tail. This is likewise so in the bony fisbes; but in the gar pike it is a permanent condition, while in the bony fishes the extremity of the dorsal cord becomes extinct. The mode of development of the pectoral lobe furnishes another point of resemblance. A likeness to the shark is noticeable in the brain and mode of formation of the gills. The young gar pikes are slow in their movements, swimming about but little, and attaching themselves to fixed objects by an extraordinary horsesboe-sbaped ring of sucker appendages about the mouth. The summing up of Mr. Agassiz's investigations is, that the young gar pike has many characteristics in common with the sharks and skates, but is not so different from the bony fishes as has bitherto been supposed.
The Sequeias.-Mr. Jobn Muir bas an interesting paper in Harper's upon the "New Sequoii Forests of California." He gives therein the details of a discovery by himself of a grand forest of Sequoias seventy miles long, lying considerably south of the isolated groups bitherto known, and containing large numbers of saplings, which indicate that the species is still in a vigorous state of existence. It bas here tofore been argued that the few groups of these trees known made it probable that the species was dying out from its las strongbolds upon the earth, for it has comedown to us from pre-glacial times, when it existed in Europe also, as geology testifies. Mr. Muir's researches lead him to believe that the species bas never been more extensively distributed on the Sierra in post-glacial times than it is now ; and that to-day it is as full of life and vigor as it was 10,000 years ago.
Instinct in a Crab.-Dr. Darwin, in his "Voyage of a Nat uralist," thus describes a crab which makes its diet of cocoanuts, and which he found on Kneeling Island, in the South seas:

It is common on all parts of this dry land, and grows to a monstrous size. It bas a front pair of legs, terminated ly a strong and beavy pincers, and the last pair by others which are narrow and weak. It would at first be thought quite are narrow and weak. It would at first be thought quite
impossible for a crab to open a strong cocoanut covered with the husk; but Mr. Liesk assures me be has repeatedly seen the operation effected. The crab begins by tearing the busk, fiber by fiber, and always from that end under which the three eyeboles are situated. When this is completed the crab commences bammering with its heavy claws on one of these eyeboles till an opening is made; then turning around its body, by the aid of its narrow pair of pincers it extracts the albuminous substance. I think this is as curious a case of instinct as I ever beard of, and likewise of adaptation in tructure between two objects apparently so remote from each other in the scheme of nature as a crab and a cocoanut."

A Viviparous Cockroach.-At a recent meeting of the Entomological Society of London, Mr. Wood-Mason stated that it might interest the members of the Society to bear that in the course of bis anatomical work be bad discovered a remarkable case of viviparity in the orthoptera, in a large cockroach belonging to the genus Panestlian, the species of which inbabit the tropical forests of Southern Λ sia and of Australia, where they live in the rotten wood of fallen

