

Hydrogen Gas.-No. 2
In our last, it was stated that water was comporand of hydrogen and oxygen. Toform water from these two elements it is not sufficient to raise the gases; for the mixed gases rnight be kept for any length of time without any union taking place between them; but if two volumes or measure of hydrogen be mized with one volume or measure of oxy. Len, and then a light from any flaming body be applied to the gases, \&c., mixed, an exmlosion immediately takes place-the gases combine, and water or steam is the result of this combination. The explosion in this case is very violent; and great caution should be observed in performing this experiment. The gases should be mixed only in small quantities at a time, and the containing vessel should be of sufficient strength to resist the force of the explosion.
Pure water, when required, is obtained by distillation from impure river or well water. For this purpose the water is put into a large s iil, and mainained at a boiling heat; the steast that passes off first generally contains a staall quantity of ammonia-this is allowed to escape for a few minutes-the steam is then caused to pass throu_h a long length of metalite pile surrounded with cold water, which condenses it; it will then be in a state of purity suficient for most purposes, but not be ab-olutely pure. Filtering water does not render it pure; it merely separates from the waier those irsolisble matters floating in itthe water still retaining all the matters that were dissolved in it before being filtered. Warer dissolves, not only solid substances, but also matters in a gaseous state; 100 cubic inches of water at $60^{\circ} \mathrm{Fah}$, when the baro meter stands at 30 inches, will absorb of
Sulphurated Hydrogen 100 cubic inches.
Carbenic Acid
Nitruus Oxide G
100
80
Olefient Gas
Oxymen
Carbunic Oxide
Nitrogen
Hydrogen
These gaseous substances are all expelled by boiling the water; but the solid substances dissolved in the water are gradually precipitated or deposited, as the water is evapo-rated-because the water can unly dissolve a certain quantity of each solid substance contained in it ; when, theretore, a portion of the water has been evaporated, the portion of solid matter, previously held in solution by the portion evaporated, cannot be taken up or dis. solved by the water remaining in the veasel that is already saturated; it therefore remains as a solid deposit, which is generally denominated fur. Sometimes this deposition of solid matter is obyerved to take place before scarcely any of the water has evaporated, indeed before the water boils; this is particularly the case with water containing carbonate of lime, and depends upon the fact, that carbonate of lime (chalk) is not soluble in water, but is soluble in carbonic acid, while in solution in water; when the carbonic acid is expelled by heat, the carbonate fallsas an insoluble $p . w$ der, a s there is ne longer present any substance that has the power of dissolv. ing it I'o render these deposits soluble in a small quantity of water is an object of great importance to engineers, and has been the suibject of several patents.

Sllver Fire.

Place a pute of burning charsoal, a morsel of dried chrystels of nitrate of silver, (not the lunar caustic,) and it will immediately throw out the must beantiful sparks that can be imasined, while the surface of the charcoal will hecoated with silver:'

There will be a total eclipse of the sun on the 17 th prox., and an eclipse of the moon on the 2nd Sept., both visible in the United States.

1ron Moulding.

 ontinued from page 38The principal materials used in our mould The principal materials used in our mould-
ing, are sand of varisus kinds, clay and charine, are sand of varisus kinds, clay and char-
coal dust. Sand is superior to all other substancoal dust. Sand is superior to all other substan-
ces as a material for forming moulds generally. Hot iron has no chemical action uponit, although it has upon the coal dust. Sand is a fine medium to conduct the air which is expelled from thespace in the mould filled with the molten iron, and also for the other gases, generated by the heated iron coming in contact with the coal dust. It also possesses considerable adhesiveness when pressed together to make it retain its form against the pressure of the molten metal, and it conforms itself very accurately to the surface of the pattern umbedded in it. For long cores, the more free the sand is, so much the better, if it has adhesiveness. but as it wants this, it must be tembered with clay, yeast, molasses, or meal made from ground peas. Clay mixed with sand is used for what is termed loam moulding. They are mixed at the rate of nine parts of sand to one of clay, ground together with a little water. 'rhis, with a handiul of hair and a little saw dust added, fo ms core loam. Loam moulding isexecuted without the common patterns. There are various
kinds of sand use fur moulding. Free argilicious sand, ground along with one twelfth part of the best bituminous coal, makes a good sand for common purposeg. The use of dry sand core is to allow the air to escape freely from the inside of the casting, and also to have a core that will not crush with the weisht of metal.
Were the melted iron allowed to come in free contact with sand of the mould, it would enter its minutest interstices, and thus produce a rough surface. To avoid this, ground charcoal dust (some say oak is best,) is dusled over the surface of the mould and pressed and smoothed down. The way by which it protects the sand is by its inflammability If liquid iron is poured on a smooth surface of wood, it rolls about like mercury. This is
caused by the gases arising from the combus. caused by the gases arising from the combus-
tion of the wood, raising the iron off the surface. The use of the coal dust that is ground along with the saper is fur the purpose of keeping the metal from running into thesand pores, when the metal is ton nowerful for the dusting powder. Many moulders do not know the philosophical use of the black dust.

The accompanying engraving represents differen: kinds of tools used by moulders for their work ; No. 1 is the trowel,-it is much used, and is made of different sizes, from less than half an inch to two inches broad and three inches long. It is used to smooth the surtace of the sand, to press down and polish the blackening and repair irjured parts of the moulding, \&c. No. 2 is another trowel for entering angles of the moulding. No. 3 is used for hollow impressions in the sand. No. 4 is the cleaner for smoothing sunk surfaces in the sand below the reach of the trowel -the lower end goes to the bottom, to take surface; the upper end smooths the sides. No. 5 is the first rammer. It is about four feet and a half long. No. 6 is the second rammer for finishing the work commenced by the first. It has a round face, and is about three and a half inches in diameter. No. 7 is a pair of pincers, for grasping and shifting the castings. Shovels are used for working the sand, and serve for sifting it. There are also bellows used to blow loose sand off mould ings; pots for holding the packing sand, and the water used in the moulding; swabs for
applying the water to the mouldings; and there are bags to hold the black dust to be shaken on the sand; piercers made of thick iron wire, sharpened at one end to a point, are used for piercing the same to let out the

(To be continued.)

Galvinzing Iron.

If iron plates are well scoured, they can be covered with zinc, by depositing it upon them by means of a galvanic battery. It is done upon the principle of the electrotype A solution of the chloride of zinc and borax is used, in which to place the plates connected with the wires of the battery, when the zinc witl be precipitated on and in union with the iron. A very weakcurrent of elec tricity is used ; zinc, dissolved in hydrochloric acid and ammonia, makes an excellent solution for the purpose. The more simple way, however, is the old plan :-Scour the plates well and dip them into molten zinc, into which is thrown some sal ammoniac. The best way to kee;) the zinc in the right state, is to have the ziac bath placed in a bath of molten lead. This latter plan has been al. lowed to be more troublesome in one sense, and not in another, viz., less trouble in the evaporization of the zinc.

Scientific Meeting

The American Association for the advancement of S:ience, commenced its second annual meeting, at Harvard Hall, Cambridge, (Mass.) on Tuesday of last week. Frofessor Henry was elected President for the curren jear.
The first paper read, was irom Professor Secchi, of Georgetown, relative to the causes of the Aurora Borealis. He propounded a theory based upon the powers of moist air as a conductor of Electricity, and gave much in terestinginformation on the subject.

Dr. Hare, of Phila., difiered entirely in opinion, and mentioned experiments, instituted by himself, which proved the ;iosition he took Professor Henry also made some observations, in the course of which he said.
The Smithsonian Institute, in connnection with an ex'ended system of meteorology whic: it hay modertaken to establisthe has is sued directions for observations of the A urora These directions are similar to a set issued by the directors of the observatory at Toronto for observers in Canada. The observations made in the two countries will thus form one extended system. The proprietors of the several telegraph lines have offered to grant us the use of their wires for meteorological pur poses, and it is hoped when the lines are com pleted, and we have established a set of observers extending, for example, from Toronto to Washington, or even farther south, we shall be able to study the phenomenon of the Aurora with more precision than it has ever been studied. On a long line extending north and south, the observer for example, at Torontn,
having noticed an Aurora may call the attention to it of all the observess along the line and thus the extent of the visibility, and the simultaneous appearance of any peculiar phase of the meteor, mav be readily determined.

Shrinking of Flannel.

Enclose new flannel in a bag; put it into a boiler with cold water, heat and boil it. It will never shrink any more after this opera-ments.-Ex.
[It will shrink though. Just take and rub it, or pound it among some strong soap suds and you will find out.

hITERARY NOTICES.

To say we are glad to welcome upon our able Peterson's National Magazine, would be but a reiteration of what we have said on sevain for good reading in this Magazine, and we seldom lay it by until we come to that portion which is devoted to the ladies' dressing arrangements. We avoid this portion irom our peculiar attachment to Bachelorship. We dare say, however, that Peterson under-
stands their wants in this respect, and with the united aid of Mrs. Stephens, the accomplished Editress, we dare not presume to
plate question their value to the ladies. The engravings are good, the matter equally so. We
would remind the ladias that a capital trent is lost by not reading "The Palaces and PrisPhiladelphia.

Godey's Lady's Bnok for Seplember,has heen recpived hrough the politeness of H
Lnng \& Bro 43 Ann St. this city. It contain 13 original engravings and 24 extra pages of fine lelter press. This number is sunerb and notwithstanding the publisher has been work ing as he says, with the thermometer at 99 . degrees and upwards, he has realiy succeeded in producing a highly creditable number, and
not inferior to any previous, this is saying considerable, although nothing but truth. The siderable, although nothing but truth. The
mezzotint of 'Contentment better than Wealth is finely, done, so is also the "The view on the Hudson"" and the colnred plate of "Paris fa-
shons A mericanized." The number through-

It is with pleasure we acknowledge the re ceipt of the Sept. No. of Sartain's Unien Magazine, of Literature and Arr, and it is tru ly what its tille indicates. We are indehted bune Buildings in this city, for the monthly receipt of this valuable work. The present No. contains four beautiful engravings, besides a number of plates illustrative of the latest fashions for Autumn, and we are confident that its nages will be found highly interesting and instructive, by its fair readers. The leading picture in this No. Christ weeping over Jerusalem, is execuled by Mr. J. Sartain who is not excelled probably by any one in this art The scene represented is very impressive.

NEW-PROSPECTus.

of the
SCIENTIFIC AMERICAN ! TO INVENTORS, MECHANICS AND ARTIZANS.
The Publishers oi the SCIENTIFIC AMERICAN in returning their thanks to the community forthe liberal support and encourage ment which has been
extended to them during the past four years, would respectfully give notice that the 1st number of Vol respectrully give notice that the ist number of Vor ding a favorable opportunity for all to subscribe who may wish to a vail themselves of the valuable in formation alwass found in its columns. The new volume will be commenceu with new type, printed on extra fine paper, manufactured expressly for thas publication, and embelished with a chaste and elegant border. It will be published as heretofore in quarto form, thus affording, at the end of the jear,
BEACTHLL BOOK ol OvF : 400 Paces, a beAlTIFLL BOOK oi Orer 400 Pages, contajaing between 5 and 600 ORIGINAL ENGRA-
VINGSof NEW INVENTIONS, described by letVINGSof NEW INVENTIONS, described by letters of reference. tesides a great amount of read-
ing matter, valuable to every man in the country, ing matter, valuable to every man in the country,
An increasod amount of care and expense will be Anincreasod amount of care and expense will be bestowed upon this Volume, to render it morefully what it has been termed, "The best Nechanical
Paper in the World." Its columns, as usual, will be Paper in the World. Its columns, as usual, will be in reard to mesrers of eCIENTIFIC and in regard to the progress of \&CIENTIFIC and ME CHITECTURE, BOTANY, MANUFACTURES RAIL ROAD Intelligence, and the WEEKLY LIST OF PATENTS, prepared expressly for this Journal at the Patent Office, Washington.
As an evidence of the estimation in which this publication is held by the Scientific and Mechanical portion of the community, it is only only neces. sary to state, that its circulation has increased with already exceeding the united circulation of all the Mechanical and Scientific publications in thiscoun try, and the largest of any single one in the world. The information obtained from the Scientific American can always be relied upen as being correct : and we shall, as utual, aim to elevate the interest of our industrious mechanics, and also to assist them in their labors, by sound advice and practi cal instruction.
TERMS :-Two dollars a year in advance; or, If desired, one doll
der in six months.
All Letters must be Post Paid and directed to
MUNN \& CO,
Publishers of the Scientific American,
123 Fulton street, New York. N. B.-Patents secured and mechanicaldrawing
executed on the most reasonable terms at the sci. entific American office.

INDUCEMENTS FOR CLUBBING.
Any person who will send as four subscribera for six months, at our regular rates, shall be entitled to one copy for the same length of time; or we will furnish-

Southern and Western Moneytaken at par for subscriptions.
full value.
N. B-Subscribers will bear in mind that we employ no Agents to travel on our account; a list of all of whom are duly authorized to act as such, and node other.

