Archimedes

(Continued from our last.)
Archimedes appears, also to have had considerable skill in the science of optics. By a particular combination of mirrors, he is reported by hist rians to have burned either the whole, or part of the Roman fleet, during the siege of Syracuse. This achievement has been questioned by many modern philoso phers, but whether it was actually performed or not, its practicability, at least, has bee fully demonstrated by Buffon; and unless he had accomplished some such feat as this, i can scarcely be conceived how the report of it could have been so generally credited, par ticularly at a time when the world were stran gers to the wonders of burning instruments.
Although the discoveries of Archimedes in mechanics were both splendid and triumphan yet, even they were eclipsed by those he made in the regions of pure science. An while Euclid had laid the foundation of ge ometry in his immaculate Elements, Archi medes raised the noble superstructure to very high elevation, by the discovery of a se ries of propositions that constitute the most brilliant acquisitions of the ancients. In his Treatise on the properties of the cylinder and the sphere, he demonstrated this most beautifultheorem: That the superficial area, as well as the solid contents of every sphere, is equal to two thirds of that of its circumscribed cylinder. So justly enamoured was he of this admirable property of these solids, that he requested, that after his death, the figure of the cylinder, with its inscribed sphere might be engraven on his tomb. And Cicero during his quæstorship in Sicily, with that noble feeling of regard which true genius al ways inspires, and teaches to be due to merit though of a different kind, ordered the tomb stone of the philosopher to be sought out, and cleared from the rubbish that concealed it from the eyes of the world.

Archimedes was the first who approximated to the rectification and quadrature of the circle, a problem which has exercised the inge nuity of mathematicians in all ages, and one which seems destined, from the nature of the inquiry, never to be be perfectly accomplish ed. In his book on the Measure of the Circle he demonstrates the following theorem, which is of the greatest practical utility: That the area of a circle is equal to that of a triangle whose base is equal to the circumference, perpendicular equal to the radius. He also proved, That if the diameter of a circle be reckoned unity, the circumference will be be t ween 310.70 and 310.71 . The method by which Archimedes arrived at this conclusion, is one of the finest specimens of human in genuity and is capable of carrying the approximation to the exact circumference to any degree of accuracy required. This method, which is denominated the Method of Exhaustions, contains in it the germ of all the modern discoveries, and was capable of being applied to the investigation of problems, for which even the genius of Newton found it necessary to invent a new Calculi.
In his work on Conoids and Spheroids, he has unfolded many profound and ingenious properties of these solids, and their relations to cylinders and cones of the same altitude.He was the first that ever found the complete quadrature of a curve, by demonstrating, That the area of the parabola, bounded by a chord is two-thirds of the circumscribing parallelogram. The properties of the solids formed by the revolution of the conic sections which he discovered, are equally striking and beautiful, and such as entitled him, when we consider his other discoveries, to the appellation of the Father of Mensuration.
In his Arenarius, or Treatise on the number of the Sands, he attempted to show the possibility of expressing by numbers the grains of sand that would fill the whole space of the universe. In this work, he pointed out a property of a geometrical progression that was afterwards made the foundation of the theory of logarithms; so near was this great man to one of the finest inventions of modern iimes. Had the mode of notation employed by the Greeks, though vastly superior to that of any other ancient nation, been less cumbrous than it was, there cas be no doubt but Archimedes would have anticipated many discove-
ries of the moderns. Indeed it is wonderful have had some of their caloric squeezed out of that he did not attempt to simplify that nota- them into the cylinder, which is thereby renion ; but the tide of his ideas had already dered hotter. Doubtless, if the bulk of the lowed beyond it, and, in the long series of ages that succeeded, nogenius less lofty was ound, to supply the deficiency, till the touch of science again illumed the world. In fine, the writings of Archimedes constitute some of the most precious relics of antiquity, and show that, though the progress of discovery pass the point where men of ordinary capacipass the point where men of ordinary capaci minds, anticipate the labor of ages.
(To be continued.)

Heat by Friction.

One class of philosophers say that "the ensation of heat is produced by a certain im ponderable form of matter," and another clas ontend that heat consists "in the motion mong the particles of bodies," communicated an apparent vacuum by the waving of a subtile elastic medium, which is also concerned in the phenomena of light.
The production of heat by mechanical means, appears to be considered as furnishing the trongest argument against the materiality of heat. Therefore, to show how the mechanial production of heat can be explained con istently with the theory that heat is material s to add considerably to the strength of that theory. The material theory is well suppored by the phenomenon of expansion, fusion, aporisation, conduction, condensation, radia ion, reflection, and refraction; but the pro duction of heat by friction and percussion, is thought to be best explained by the theor that heat is motion.
We must first suppose caloric to be repul ive of itself, but that it is attracted by ma ter.
The heat evolved by the condensation or ompression of matter, is readily explained by the material theory ; for supposing 10 cubic feet of any substance to contain 5,000 atoms of caloric, we have in this case 500 atoms of caloric to each cubic toot of matter; but if the substance be subjected to a force which shall ompress it to one-half of its tormer oulk, w hall then have 1000 atoms of caloric, instead f50, to each cubic foot of matter, and accor dingly a considerable increase of sensible heat Now, frction and percussion can be explain ed in just the same manner. Friction is a compound of compression and motion.
Berthollet, by subjecting metals to the stroke of a coining-press, found that the degree of heat produced by percussion is always in proportion to the degree of condensation. The first stroke was more effectual than the second and the second than the third, both with re gard to heat and condensation
Count Rumford's experiments on frictional heat in the boring of cannon, are considered to raise considerable objections against the theory of caloric. In a half an hour, by the mere process of boring, he raised the temperature of a cannon from 600 to 130°. The borer was pressed against the cannon, on an area of tw square inches with a force of 10,000 lbs. avoir-
dupois. The apparatus was wrapped in flan. nel and worked by horses ; and the borer made 960 turns in the half hour. This philosopher likewise bored a cylinder of brass, insulated in water. The borer was made to revolve by machinery, 32 times in a minute. At first the temperature was 60°, but after an hour's boring it was 107°; and in $2 \frac{1}{2}$ hours the wate boiled. The whole apparatus, weighing 15 bs., was raised to the same temperature
These experiments are considered to prove that heat may be obtained without limitation, bv the friction of insulated metals ; and it is argued, that what can be obtained from insulated bodies without limitation, cannot be material. But one great source of heat is overlooked in this reasoning, viz. the condensation of the metallic borings. It is unreasonable to suppose that a pressure of 10,000 lbs. could be exerted upon two square inches without producing some degree of compression. This compression causes an increase of heat in the condensed part, and the caloric thus rendered active is rapidly diffused through the cylinder, while at the same time the part compressed is cut away by the borer ; so that the borings are condensed pieces of metal which
particles abraided were to be found, by immersing them in water, it would be found that they occupied less space than when they form. ed part of the solid cylinder. Some persons may be disposed to doubt, whether cold iron can contain sufficient caloric to raise its tem perature so high; but let us consider, that matter attracts caloric, and iron is a very dense
body, and accordingly must attract and retain body, and accordingly must attract and retain he ric with considerable pold when it reall he reason why it an heat. According con the pow Dr. Black, this po a certain portion of latent heat, givea the me tals their ductibility. Moreover, as a great increase of heat in metals is requisite to produce a slight expansion, it might be expected that a slight degree of compression should cause a great revolution of heat.
From this consideration of the subject, it appears of very little consequence whether the metals undergoing friction are insulated or not, seeing that the heat can be produced diectly from the bodies themselves.
Sir H. Davy, by making two pieces of ice rub against each other in vacuo, produced enough heat to melt them. This case is analagous to the boring of cannon. Certain par ticles of ice are compressed and abraided, and their caloric squeezed out and rendered activ by the condensation. The analogy is still fur ther supported by the superior density of the watery particles compared with the icy ones Similar reasoning will apply to Boyle's experiment of producing heat by the friction of brass in vacuo.
Boring wood with a gimlet is also analagous to the boring of cannon; only in the for-
mer case, the metal having a stronger attracoric than having a stronger altrac the greater part of the heat, and the gimlet soon becomes hot. This is the case in the school-boy's experiment of rubbing a button on a plank; caloric is squeezed out of the wood by the compression of its parts, and the unton receives most of the caloric, owing to duce she a craction for lt. It is easier to pro duce heat from the friction of rough surfaces than smooth ones, because in the former case certain particles are rubbed off, which being mall, are readily condensed, and made to volve their latent caloric.
Fulminating compounds are substances ca pable of igniting with a small degree of heat hen undergoing compression or percussion their bulk is reduced, and their caloric concentrated in a degree sufficient to cause their iguition. When a chemical match is drawn ver sand-paper, certain phosphoric particle are rubbed off, and being compressed between the match and the paper, their heat is raised sufficiently high to ignite them, and fire the match. If the match be drawn over a smooth surface, the compression must be increased for the temperature of the whole phosphoric must be ralsed in order to causeignitio Dr. Young, in arguing against the materia ypothesis, says that "if the repulsive parti cles of caloric followed each otherat a distance
they would still approach near enough to each they would still approach near enough to each
other in the focus of a burning glass, to have their motions deflected from a rectilinear di rection." Perhapsthis is the case, for we can not see heat but it is actually found in the prismatic spectrum, that the heating rays extend beyond and outside the illuminating rays.

Casting Bells.

Large bells are usually cast in loam moulds, being swept up, by means of wooden or metal patterns, whose contour is an exact represen tation of the inner and outer surfaces of the intended bell. Sometimes, indeed, the whole exterior of the bell is moulded in wax, which serves as a model to form the impression in the sand, the wax being melted out, previous to pouring in the metal. This plan is rarely pursued, and is only feasible when the casting is small. The inscriptions, ornamental scrolls, \&c. usually found on bells, are put on the clay mould separately, being moulded in wax or clay, and stuck on while soft. The same plan is also pursued with regard to the ears, or supporting lugs, by which the bell is hung.

Islands ormaine.
The Hon. H. Hame lecture beore the Mechanics Association, in Bangor, Me., stated that in no part of the world were there, in the same distance, so many beautiful Islands as there are on the coast of Maine. He did not know how many there were. Mr. Williamson, in his history, states that there were about 400, but in fact there were about 1000 islands and islets ; the larger portion of hem within a space of 130 miles east of Cape Elizabeth. In the eastern part of the State, between Machias Bay and Quoddy Head, there were but very few islands. The coast in that part of the State was bold and the water in violent ooutheaststorms, frequently dashed against it with sufficient power to be thrown into the air 100 feet.
The climate of the islands is much milder than upon the main, the winters being at least wo months shorter. It has been ascertained that the range of the thermometer was from twenty to thirty degrees less upon the islands than in the same parallel of latitude upon the main land.
The islandsare all noted for their salubrity, and upon some of them it is said, that when people grow very old, they were obliged to move on to the main land, in order to die.
The people upon the islands are very hospitable and generous-hearted. There are, in fact, but few, if any poor people upon our is. lands, and they never suffer from hunger, because they can, at any time, resort to the clam bank and fishing.ground.

The Orphan's Gratitude.
Hon. A. H. Stephens, of Georgia, in a recent address at a meeting in Alexandria, for the benefit of the Orphan Asylum and Free School, of thatcity, related the following anecdote:
"A poor little boy in a cold night in June, with no home or roof to shelter his head, no paternal or maternal guardian or guide to proect or direct him on his way, reached at nightall the house of a rich planter, who took him in, fed, lodged and sent him on his way, with his blessing. Those kind attentions cheered his heart and inspired him with fresh courage to battle with the obstacles of life. Years rol. led round : Providence led him on, he had reached the legal profession : his host had died; the cormorants that prey on the substance of man had formed a conspiracy to get from the widow her estates. She sent for the nearest counsel to commit her cause to him, and that counsel proved to be the orphan boy years before welcomed and entertained by her deceased husband. The stimulus of a warm and tenacious gratitude was now added to the ordinary motive connected with the profession. He undertook her cause with a will not easy to be resisted, he gained it ; the widow's estates were secured to her in perpetuity; and Mr. Stephen's added, with an emphasis of emotion that sent its electric thrill throughout the house, "that orphan boy stands before you!"

anecdote of Aliston

Some years after Allston had acquired a onsiderable reputation as a painter, a friend showed him a miniature, and begged he would ive his sincere opinion upon its merits, as the young man whodrew it had some thoughts of becoming a painter by profession. Allston fter much pressing, and declining to give an opinion, candidly told the gentleman he feared the lad.would never do anything ás a pain er, and advised his following some more con genial pursnit. His friend then convinced him that the work had been done by Allston himself for this very gentleman, when Allston was very young!

Jewlsh Customs.
Among the inquiries addressed to Major Noah, we find the following together with his answer :
" Was it ever the practice of the Jewish aw to make malefactors drunk before execu ion? No. But they gave the condemned a up of wine, in which there was frankincens render him insensible to pain; and the ompassionate ladies of Jerusalem provided this draught at their own expense. The cus tom is founded on the Proverbs of Solomon chap. 13, 6th verse : " Give strong drink to him that is ready to perish and wine to those that be of heavy heart."

