Srimtitio Ancritan.

ESTAELISHED 1815.
MUNN \& CO., Editors and Proprietors.
pUBLISHED WEEKLY AT
NO. B' PARK ROW, NEW YORK.
O. D. MUNN
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One copy. one year, postage included...
One copy, six months, postage included $\$ 320$
One copy, six months, postage included 160
Clubs.- One extra copy of TIIE SCIENTIFIC AMERICAN will be supplied gratis for every cluv of five subscribers at $\$ 3.20$ each ; additional copies at same proportionate rate. Postage prepaid.
Single copies of any desired number the Supplement sent to one address on receipt of 10 cents.
Remit by postal order.

The Scientific American Supplement is a distinct paper from the Scientific ambrican. Thif SUPPLEment is issued weekly, every number contains 16 octavo pages, with handsome cover, uniform in size with Screvtric Americai. Terms of subscription
for SUPPLEMET, $\$ 500$ a s ear, postage paid, to subscribers. Single conies 10 cents. Sold by all news dealers throughout the country.
Combined Rates. - The Scievtific American and Combined Rntes. - The Scientific American and Stpplempari
will be sent for one gear, postage free, on receipt of seren doldars. Both will be sent for one sear, postage free, on recelpt of st
papers to one address or different addresses, as desired. The safest way to renit is by draft, posta) order, or registered letter

Scientific Amcrican Export Edition.

The Scientific amprican Export Edition is a large and eplendid periThe SCIENTIFIC AMPRICAN Export Edition is a large and oplendid neri-
odical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated. embracing: (1., Nost of the large quarto pages, profusely illustrated. embracing: ($1 .$, Nost of the
plates and pages of the four preceding weelly issues of the scrextiric plates and pages of the four preceding weekly issues of the ccrevTrFic
AM FRican, with its splendid engravings and valuable information; (2.1
Commerctal trade, and manufacturing announcements of leading houses. Terms for Expart Edition, 85.00 a year, sent prepaid to any nart of the world. Single copies 50 cents. Manufacturers and others who desire to secure foreign trade may have large, and handsomely disp
nouncements published in this edition at a verg moderate cost. The Scifitific Anerican Export Edition has a large guaranteed circu
lation in all commercial places throughout the world. Address NUNN lation in all commercial place
CO., 37 Park Row, New York.
VOL. XXXIX., No. 9. [New Series.] Thirty-third Year.
NEW YORK, SATURDAY, Λ UGUST 81, 1878.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT

INO. 139,

For the Week ending August 31, 1878.

II.

Sal' of the Library of the late Firmin-Didot.
I. FREECH INTERNATIONAL EXPOSTION OF 1888 . The Statue
of Charlemagne, 1inlustration.-Dutch 1 orkmen's Dwelling, 1 figure

 V. CAEMISTRYANDMETALLURGY-Chemical Nem No Notices. Fixae

 furming and stock raising.

THE RIGHTS OF INVESTIGATORS.

In the Scientific American Sopplement for July 20, 1878, there was published an article entitled " How to Build a Working Phonograph," with working drawings for the construction of a cheap and practical instrument. In the Scientific American of Mugust 24 wc described and figured "a simple phonograph," in such a manner that any clever boy could make therefrom an instrument that would illustrate perfectly the essential mechanism and action of that wonderful invention.

In so doing we have only carricd out the wish of the inventor, as expressed to us, in helping to give the widest publicity to his invention. The company which has purchased the right to make the phonograph for commercial protest that it is not only different vicw of the matter, and courage infringements, as they term it, but illegal on the part of our readers to follow the directions we have given for making phonographs for experimental purposes. In some instances, we are informed, such makers have been threatened with legal penaltics for doing what they have a
perfect right to do; and possibly some may be deterred from pursuing their investigations in this direction, through fear of offending the patent law, and so involving themselves in legal difficultics.
The law on this point is not obscure. Investigators have rights as wofl as patentess; and among these is the right to make any patented article for the purpose of ascertaining its sufficiency to produce the described effect; in other words, for testing itspractical utility. It is only when the machine or other article is made for use or sale, with the intent to infringe the patent right and deprive the owner of his lawful When, that the act becomes an offense against the law menting machine is made for the " mere purpose of experiheld in Jones $v s$. Pierce, Webs. Pat. Cas., 125, Patteson, J.for the maker's "own amusement, or as a model," there is no infringement.
If this were not the case the progress of invention would be very scriously hindered: iuprovements would be next to impossible; and practical investigators and students-from whom most inventions come-would be gricvously hampered at cvery siage of their progress. Unfortunately the purchasers of patents are too apt to construc their rights so as to make them cover pretty much the entire universe, and, if they could have their own way, would allow no one to move in any direction without their consent. This may be a natural outcome of human selfisliness; lut it is not at all in accordance with the spirit of the patent law.

As it appears to us, the parties cont tolling the phonograph, like the telegraph companies, have missed, or rather have refused to avail themselves of, a most profitable field of operation, in not mecting promptly the eager public demand for experimental instruments. Thousands of instruments could have been sold, at a price affording a large profit, though really low, to persons who would have been glad to luy them as curiosities, or for the purpose of studying their singular propertics and effects; this without interfering i the least with the use of more costly and perfect instruments for business purposes. By refusing to meet this proper demand, they have simply compelled investigators to make their own models; and they have no right now to complain.

THE PLANET VULCAN.

After twenty years of dispute, complicated by many doubtful and conficting observations, the intra-Mercurial planet discovered by the Parisian physician, Lescarbault, will probably now have to be admitted to full standing among the plancts. The readers of the Scientific American will recall the numerous communications and articles with reference to this planet, printed in our issues for October, November and December, 1876, and the more recent article of May 25, 18\%8, when the belief was expressed that at the approaching eclipse the disputed planet would be found not far from the sun.
Ever since Le Verrier completed his demonstration of the existence of a disturbing body somewhere between Mercury and the sun, not a few astronomers have been convinced that only a favorable opportunity was necessary to verify by sight the evidence of mathematics.
Among these was Professor Watson, whose confidence was so strong that he went to Colorado determined to make the search for Vulcan his chief business. IIe said to a townsman on his return. "I was satisfied that there was a planet within the orbit of Mercury, just as I am satisficd that there is one outside the orbit of Neptunc. The perturbations of those planets, and some other phenomena, cannot be explained on any other hypothesis. So when I went there I fixed on my plan and stuck to it. I determined to sweep south of the sun, and to keep within a small space We had but threc and one half minutes, and the time was too short to try to get over too great a space I meant to search that much thoroughly, and so reduce the amount for future astronomers should I not succeed. It was on the fifth sweep that I saw the object."
In his report to Rear Λ dmiral Rodgers, Superintendent of the United States Naval Obscrvatory, Professor Watson says. "I have the honor to report that at the time of totality I observed a star of the four and a half magnitude in R. Λ.
8 h .26 m . dec. 18° north, 8 h .26 m . dec. 18° north, which is, I feel convinced, an in-
tra-Mercurial planct. I observed with a power of forty-five, and did not have time to change the power so as to enlarge the disk. There is no known star in the position observed,
and I did not see any elongation, such as ought to exist in the case of a comet very ncar the sun. I will hereafter report to you fully in regard to obscrvations made. The appearance of the o bject observed was that of a ruddy star of the four and a half magnitude. The method which I adopted prevents the possibility of error from wrong circle readings; besides I had memorized the Washnngton chart of the region, and no such star was marked thereon. By comparison with the neighboring stars on Argelander's scale, the magnitude of the planct would be the fifth, alchough my direct estimate at the time of the observation was four and half, as stated."
Speaking of the discovery, the English astronomer, Mr. Lockyer, said that he did not look for Vulcan and did not see it, though he believed in Le Verrier's prophecy that it would be found at some time. He added. "We may rely upon Professor Watson's statement that it is not a comet, and it is certainly not a star, therefore it must be a planet, and, from its position, an intra-Mercurial onc."
Much to Professor Watson's delight his discovery was in a measure confirmed by that of Mr. Lewis Swift, of Rochester, who was at a ncighboring station. Mr. Swift's observation seems to have been, in a sense, accidental, yct there is no reason to question its scientific value. In giving an account of lis discovery to the Rochester Democrat, Mr. Swift says: " Λ bout one minute after totality two stars caught my eye about three degrecs, by estimation, southwest of the sun. I saw them twice and attempted a third observation, but a small cloud obscured the locality. The stars were both of the fifth magnitude, and but one is on the chart of the heavens. This star I recognized as Theta in Cancer. The two stars were about cight minutes apart. There is no such configuration of stars in the constellation of Cancer. I have no doubt that the unknown star is an intra-Mercurial planct, and am also inclined to believe that there may be more than one such planet.'

AMMONIA IN THE AIR.

Dr. R. Angus Smith, who has done so much for the chemistry of the air, lately read before the Manchester Literary and Philosophical Society a paperon the distribution of am monia, in which he described the simplest method yet pro posed for determining the amount of ammonia in the air. And since such ammonia may be teken as an index of the amount of decayed matter in any locality, the hygienic importance of an casy test for it is not small. The availability of the proposed test arises from the circumstance that ammonia is deposited from the air on every object exposed thereto. "If you pick up a stonc in a city, and wash off the matter on its surface, you will find the water to contain am monia. If you wash a clair or a table or anything in a room, you will find anmonia in the wasling. If you wash your hands you will find the same, and your paper, your pen, your table cloth, and clothes all show ammonia, and even the class cover to an ornament has retained some on its sarface." In short ammonia sticks to everything, and can be readily washed off with pure water. Hence Dr. Smith inferred that he might save himself much of the trouble he had been taking in laborious washings of air to determine the presence of ammonia, and gain the desired end by testing the superficial deposit of ammonia which gathers on clean substances during ordinary exposure. Accordingly he suspended small glass flasks in various parts of his laboratory and examined them daily, washing the outer surfaces with pure water, and testing at once for ammonia with the Nessler solution. Subsecquently a great many observations were made by means of glasses exposed to air in door and out, where the air was sweet and where it was foul. By using glasses of definite size it was casy to determine whether the ammonia in the air was or was not in excess. In his laboratory experiments ammonia was observed when the glasses had been exposed an hour and a half.
Of the practical working of the test Dr. Smith remarks that it must not be forgoten that the ammonia may be pure or it may be connected with organic matter; and consequently this mode of inquiry is better suited as a negative test to show that ammonia is absent than to show what is present. When ammonia is absent we may be sure that the air is not polluted by decaying matter; when it is present there is need of caution. Dr. Smith adds that he hopes to make this a ready popular test for air, a test for sewer gases, for overcrowding, for cleanliness of habitations, and even of furniture, as well as for smoke and all the sources of ammonia. Of course it must be used with consideration and the conclusions must not be drawn by an ignorant person. The entire paper will be found in the Scientific American Supplement , No. 139.

SOFT VS. HARD IRON.

Λ series of most careful experiments recently undertaken by Mr. David Kirkaldy, to find out the relative merits of wrought iron plates manufactured by Krupp, of Essen, and those made in Yorkshire, demonstrated that, as regards the elastic limit, or the amount of load at which the elasticity becomes impaired, the result was in favor of the Yorkshire plates by $9 \cdot 2$ per cent, which is attributed to their greater hardness; but that the ultimate or breaking stress was in favor of the Essen plates by 5.5 per cent, the softness of the iron, as shown by the contraction at area of fracture, being also in favor of this latter.
To ascertain the reduction of tensile strength by drilled and punched holes, $42 \cdot 5$ per cent of the plates was removed by rivet holes made in their centers $21 / 2$ inches apart between

