Foreign Bodies in the Nose and Ears.

Dr. Mason, in a lecture on the Surgery of the Face, published in the Lancet, says that foreign bodies, such as cherry stones, locust beans, brass rings, state pencils, screws, but tons, pieces of wood, peas, etc., are not unfrequently met with in the aural and nasal cavities of children, and even of adults. Such substances have been known to remain in one or other of these cavities for nearly a lifetime, causing little or no inconvenience. Thus a case is related of a lady from whose nostril a foreign body was dislodged during the act of sneezing. It was found to be a button which had belonged to her little brother when they were both infants. Another case is recorded in which a piece of slate pencil was removed from a woman's ear, and which had been put there when she was at school forty years before. And a third instance, in which a cherry stone had been in an ear for sixty years. A case is recorded of a gentleman, aged forty-one, from whose ear a piece of cedar wood was removed by syringing. The patient remembered distinctly the fact of its introduction when he was a boy at school, at least thirty years previous. No attempt had been made to extract it, and its presence had not troubled him until now. It occasionally happens, however, that a good deal of inflammatory action is set up by the foreign body, as in the case of a girl who was under the author's care in the hospital, to which she had been admitted on account of a small stone in her ear. She subsequently had paralysis of the facial nerve. A case is reported of a child who not only had facial palsy, but died of meningitis, caused by the presence of a locust bean in the ear. Living larvæ have been found in the meatus of the ear. Dr. Routh publishes such a case. The patient was a gentleman who three years before was tormented by a fly near his ear. Convulsions followed the presence of the larvæ, but the patient recovered, although he remained deaf. Dr. Blake, of Boston, has seen four such cases. A case is reported which shows the curious course taken by a pin that had been introduced into the external meatus. It passed through the middle ear, probably along the Eustachian tube, and was extracted by the patient from her throat by hooking it with her finger. There are various instruments employed for removing foreign bod. light drilling in wood or metal, invented by Mr. C. L. Bel- get among M. Mezzarelli's plants because nothing enters his

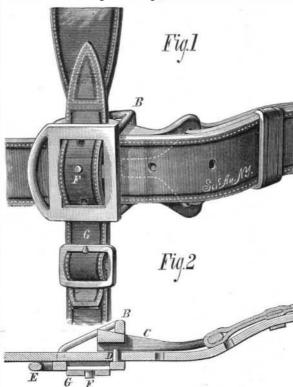
ies from the ear, each good in its way-a loop of wire, or a needle with the point just slightly turned up, forceps, or an instrument like that devised by the author's colleague, Dr. Hone. This consists of two pieces of silk covered silver wire, wound together in a single strand, about three inches in length. The whole is insulated and stiffened with shellac, the ends being left loose for connection with a battery and galvanometer; the object of the electrical part being to detect the presence of metallic bodies.

In dealing with foreign objects situated in the external auditory meatus, syringing the passage will often suffice to effect their removal; but in many cases forceps and other

the greatest caution. As a rule, if left alone, the substance becomes loose, and falls out on the pillow as the patient lies in bed. In extracting foreign bodies from the ear, M. Debout has recommended that the mouth of the patient should at the same time be kept open. It is sufficient to introduce the end of the finger into the external auditory canal, and In motion at a certain speed. At the same time the spring atto make the lower jaw move, in order to become convinced of the enlargement that the canal undergoes each time the condyle of the jaw is made to move. Dr. Voltilini, in some practical remarks on the subject, says that in the removal of these bodies we should never employ force; not that foreign bodies should always be left in the ear, but that matters should not be made worse by violent manipulations. More recently Dr. Dolby has laid down the very practical law that no attempt should be made to remove a foreign body from the ear unless the auditory canal be thoroughly illuminated. Where this rule is broken, the tympanic membrane will most probably be ruptured, and the life of the patient be thus placed in imminent peril.

Niello.

The composition of the Russian tula, or niello silver, has been hitherto kept secret. According to the Berliner Tagblatt, the firm of F. Zacher & Co., in Berlin, have discovered the method of manufacture, and have made it in large quantities. It consists of nine parts silver, one part copper, one part lead, and one part bismuth, which are melted together and saturated with sulphur. This mixture produces the gorgeous blue which has often been erroneously spoken of as steel blue


NEW TRACE AND PAD BUCKLE.

Our engraving represents an improved buckle for connecting the traces, hame-tugs, pads, and belly-band of a

The main frame of the buckle is provided with a flange, B which is slotted to receive the trace and the wedge-shaped block, C. The buckle frame has a rigid tongue, D, which enters a hole in the trace and prevents it from moving out of place before it is fully clamped by the wedge, C. The wedge is grooved longitudinally upon its outer side for the passage of the tongue. Upon the smaller end of the wedge, C, there the hand holding the string is relaxed, the movement of the is a loop to which is attached the end of the hame tug.

The buckle frame has a loop, E, for receiving the side straps of the harness; it also has a central bar from which a the reversal of the motion, owing to the action of the clutch. rigid tongue, F, projects for receiving the pad strap, G. To A continuous revolving movement in one direction is thus the lower end of the pad strap is attached the belly-band.

be firmly clamped between the wedge block and the buckle frame, so that the entire strength of the material may be utilized in sustaining the draught

BATES' TRACE FASTENING.

For further information, address the inventor, Mr. George E. Bales, Seattle, King Co., Washington Territory.

QUICK SPEED HAND DRILL.

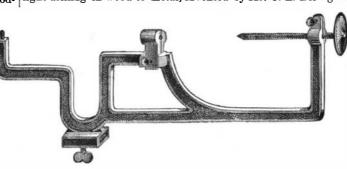


Fig. 2.-BRACKET FOR HOLDING THE HAND DRILL.

carrying the drill, and a pulley spring and clutch mechanism, all of which revolve loosely on a spindle held stationary by a handle (Fig. 1). The action is as follows: By drawing with one hand a string wound around the drum, the latter and the clutch, together with the fly-wheel and drill, are set

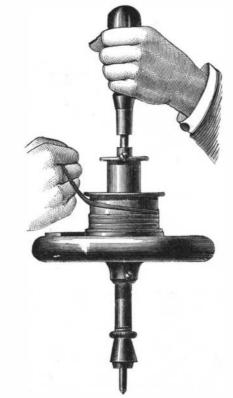


Fig. 1.-QUICK SPEED HAND DRILL

tached to the drum is tightened. As soon as the tension of pulley is reversed, taking up the slack at the same time. The fly-wheel and the drill do not, however, take part in insured for the drill, the speed varying from 500 to 1000 rev

By this construction, the trace when under tension will olutions per minute. The necessary feed may at all times be felt, and be accordingly controlled by the hand grasping the handle. The drill may be used in any position, and drills of any kind can be inserted.

By the use of a simple attachment which is not shown in the cut, the instrument can be so arranged that it may be operated with one hand. Another attachment, shown in Fig. 2, is provided by which the drill can be worked by hand or foot; this consists of a bracket for holding the drill, converting it into a tool similar to a small lathe. The bracket is held by inserting the bottom in the jaws of an ordinary vise. In this case the drill can be used for polishing. The tool is a very neat and effective one, and seems capable of doing a pretty wide range of work.

For further particulars, address James D. Foot, 22 Platt Street, New York.

The "Germ Theory" in its Chemical Aspect.

Some of our principal daily papers, whose mission is, or at least should be, to diffuse useful and correct information among the masses, have succeeded in ferreting out a remarkable French chemist, who, having renounced for a time both his profession and the outer world, has betaken himself to the gloom of an old brewery cellar in Hoboken in order to devote himself to the cultivation of mushrooms. Now in the mere growing of mushrooms for the market there is nothing to call forth particular remark-it is a very laudable and a very honorable business, whether engaged in by a gardener or by an "exiled Frenchman and chemist and a friend of Gambetta;" but when we find the newspaper reporter giving credence to the marvelous fictions of this socalled chemist, and then giving them prominence in a lengthy article, we begin to lose our respect for the "professional" qualifications of both individuals. Of this exiled chemist we are told that, "having seen mushrooms grow in France by supplying the ground with the germs, he set to work to discover their chemical composition and to manufacture them artificially." We are further informed that the experiment is a success and that 150 pounds have been Our engravings represent a new and useful tool for raised in a day, and that no poisonous kinds can possibly

> "carefully manured soil but the germs which he makes in his little laboratory." This wonderful discovery in agricultural chemistry having duly gone the rounds of the press, we shall be fully prepared to read an account of the brilliant feats of some other exiled foreign scientist in the artificial production of the "germs" or seeds of our entire catalogue of field and garden plants, and the consequent ruin of all our large seed houses. Such a statement would be no less absurd than the former. It is hardly necessary to say that mushrooms and allied plants produce and are developed from small bodies which, although not seeds, are analogous to seeds, and that the manufacture of these is just as far be-

instruments must be used, yet they should be employed with lamy, of Arlington, N. J. Its chief parts are a fly-wheel | youd the reach of human talent as that of any other living

The cultivation of these much esteemed delicacies is a remarkably easy matter, requiring neither the intervention of the foreign scientist nor the use of chemically prepared materials to make it a success; and the only wonder is that so simple and so inexpensive a process should not long ago have developed into a prominent industry in this country. To prove that it would be profitable it is only necessary to refer to the immense number of cans of "Champignons" annually imported from France into the United States, and which are held at a price out of all proportion to the costs of production and preparation for the market.

Official Paper.

Professor Reuleaux recently gave a discourse before a commercial meeting at Leipsic, upon the character of the paper employed in the public offices, which he regarded as a striking evidence that the giving of contracts to the lowest bidder exerts an injurious influence. The paper which is now delivered consists almost entirely of wood, and in the course of ten or fifteen years we may reasonably anticipate that the official records, which are of the greatest importance to our families, will be destroyed through the natural processes of decay. Such a serious evil would seem almost incredible if it was not sustained by weighty evidence. But as long as our officials hold to their present course, and so ong as they buy only what is cheapest, and what, as a nec essary consequence, is also bad, we have no right to anticipate any improvement.—Pap. Zeit.

How Grapes Ripen,

According to Comptes Rendus, St. Pierre and Magnien have arrived at the following conclusions in regard to the changes which grapes undergo while ripening. During the process they evolve carbonic acid in darkness as well as in light, when exposed to the air or placed in an indifferent gas. The amount of oxygen evolved in air is always in excess of the oxygen taken up; this has been remarked in the case of observations extending over a long space of time. Grapes can absorb or give off water according as they are placed in a moist or dry medium. As the change goes on the acids decrease in amount, while the quantity of sugar increases. The acids and the glucose are carried to the grapes by the sap. Here the acids are slowly consumed, while the sugar increases in point of concentration, and at a still later stage the sugar itself is consumed.