fine pulp, and can be mixed with normal gum in indefinit proportions. It defies the test of specific gravity and the most minute analysis, and permits the manufacturers to say that they "use only pure rubber;" while it really lowers the elasticity and tenacity of the goods, in proportion as it is used. It has been endeavored to lessen the bad effect of its addition by attempts at devulcanizing it, that is, at mul tiplying the effect of the sulphur and bringing the material back to the normal state; but notwithstanding the most earnest efforts and researches, the result has not been completely obtained. The gum has been decomposed and then given an adulterant with a value a little greater than purified mineral bitumens; but it has not been devulcanized, and, whatever its condition, the material still remains only the most easily employed adulterant of pure caoutchouc, and consequently the greatest enemy of pure fabrications.
The foreign matters generally employed are earthy or me tallic salts. They are either inert, that is, exercising, at the temperature of vulcanizing, no chemical action upon the mixture of sulphur and gum; or they are active, that is, forming sulphides in the pores of the raw goods, and at the temperature named.
Inert materials are introduced either to give colors more pleasing than the natural one (in which case zinc white, lampblack, vermilion, etc., are used), or to reduce the too great elasticity of the pure material (for this purpose powdered chalk, talc, kaolin, etc., answer).
Active materials are to facilitate vulcanization, and are principally employed when the rubber is to be applied to proserve or join tissues. The combination of these active materials with proportions of sulphur and of gum effects in the mass a disengagement of heat, which simplifies the work due to vulcanization and permits of lessening the temperature and duration, which are highly conducive to the longest possible duration of the prepared tissues. Lead salts being cheap, and having a great affinity for sulphur, are given the preference. Lime and calcined magnesia an-
swer well, but can be added in but'small proportions, their swer well, but can be added in but'small proportions, their principal rôle being to prevent the holes or cracks produced by the sulphur vapor in certain combinations containing a large proportion of admixture, or in pure preparations that are too much worked:
There are employed certain undefined polysulphides, so prepared as to contain free sulphur precipitated at the time of their formation. Of these we might mention sulphide of antimony, which gives that preparation of caoutchouc known as mineralized; also the analogous supersulphides of lead. These salts are difficult and expensive to make, and their high price p
importance.

ASTRONOMICAL NOTES

Penn Yan, N. Y., Saturday, August 17, 1878.
The following calculations are adapted to the latitude of New York city, and are expressed in true or clock time, being for the date given in the caption when not otherwise stated. planets.
Mercurysets.

REMARKS.
Venus is in the constellation Gemini, about 2° from its eastern boundary, and exactly in the earth's path, being at her ascending node. Jupiter is in the head of the Goat; and a line drawn from a Capricorni (a quintuple star) through β Capricorni, and produced 5°, will pass through Jupiter and form an arc of 8°. A most interesting occurrence may be witnessed by watching Jupiter's satellites on the evening of August 15. At 11 h .23 m . evening the fourth satellite appears at Jupiter's eastern limb, having been occulted, continues moving eastward for twenty-seven minutes, and then disappears in Jupiter's shadow, not to emerge until after he has set. At the above mentioned time the first satellite is very near inferior, geocentric conjunction, and is therefore making a transit, having disappeared at 10 b .49 m . evening, and reappearing at 1 h .9 m . morning, of the 16th; the second is west of Jupiter, and is moving toward the planet; and the third is east about twice the distance of the second, and moving from the planet. With a good telescope the shadow of the first satellite may be seen, as a dark spot, to cross Jupiter's western limb thirty-three minutes after it begins the transit referred to, and to pass off at the east thirty-three minutes after the satellite does. Uranus will be in conjunction with the sun August 22.

The Undeveloped Regions of the Southwest.
An argument for the Texas Pacific Railroad dwells a great length upon the vast extent of territory to be developed by the road. All of Western Texas, all of New Mexico, Arizona, Southern Nevada, Southern Utah, and a large portion of Northwestern Mexico would be tributary to the road, an area of about half a million square milesin extent. The part within our own national bounds is equal in size to
Germany and France combined, or enough to make ten

States the size of New York, in all of which there is not a
single mile of railway. The assertion that there was not single mile of railway. The assertion that there was not
enough arable land left in all the region to make a good sized county in Wisconsin was resented as a libel; a large part was unquestionably sterile, yet there remained a very consider able area of the highest fertility. The valleys of New Mexico, Arizona, and the bordering States of Mexico are exceedingly productive, when irrigated or where the supply of moisture is sufficient. Thewheat is equal to that of Califormoisture is sufficient. Thewheat is equal to that of Califor-
nia. Corn is a staple product, and in some parts two crops a year can be grown. Oats, barley, rye, peas, beans, and other food crops grow well and are very productive. According to locality, the peach, nectarine, apricot, plum, pear, and grape do well; oranges, lemons, olives, mangoes, bananas, and pine apples flourish; and sweet potatoes, rice, sugar cane, tobacco, cotton, coffee, cocoa, and indigo grow to perfection. Here too is one of the best wool growing regions of the Union; winter feeding is almost wholly unnecessary, and the pure dry atmosphere forms a perfect indemnity against foot rot and like diseases. The mining interests that would be developed by the road are admittedly very great. Our relations with Mexico and with the Southern Indians would be very much improved by the influence of the road. Areas along the Union Pacific, previously supposed to be beyond redemption, now bear abundant crops; a like effect would follow the building of the Southern road. Already settlements in anticipation have preceded the construction of the road in Texas. Complete it, and intelligence, science, and energy will bring into action dormant power now useless and almost unknown.

New Engineering Inventions.

Henry Exall, of Richmond, Va., has patented an Endless Chain Propeller, in which two endless chain propellers, moving around sprocket wheels, are arranged to run in open channels beneath the boat upon opposite sides of the keel, and propel the boat by securing a decided anchorage in the water. The main points of novelty are in the construction of the chain propellers, each of which is made of rod sections carrying midway bet ween their jointed ends rigiddisk paddles, the jointed ends being coupled by a shell which forms with nuts on the ends of the rods a double ball and socket joint, and also affords a hold for the grabs of the sprocket wheel. By inclosing the return chain box and supplying it with suitable pipes the current of air produced therein is utilized for purposes of ventilation. A vessel embodying the improvements is, we are told, being built at Richmond, Va.
John Paul, of La Crosse, Wis., has patented an improved Log Slide or log way employed in a sawmill for drawing up logs. The invention consists in an improved form of the slide and a novel construction of the links of an endless chain serving as a log carrier, whereby the operation of drawing the logs up the slide is greatly facilitated, and the labor considerably lessened.
Edward Huber, John C. Titus, Edward Durfee, and James F. Swinnerton have patented a Portable Engine. The objects of this invention are to lessen the bulk or size and thereby reduce the weight of the engine, as compared with others of its class; also to obviate the danger of injury to flues or flue sheet, and the labor, delay, and expense incident to repair of the same. The engine possesses several other novel features, which cannot be properly described without an en. graving.
Charles E. Clark, of Rochester, N. H., has patented an improved Hose Pipe and Nozzle, which is made in straight sections of different diameter, and provided with an inwardly projecting annular edge at the inner end of each section, the object being to reduce the friction between the water and inner surface of the pipe and nozzle by dispensing with taper ing surfaces and causing a portion of the water to act as a guide or friction surface for the stream passing through the nozzle.
Walter Dawson, of Scranton, Pa., has patented an improved Feed-water Heater for Locomotives, in which the surplus steam is conducted from the boiler and discharged into the tender through a pipe suitably arranged forthe purpose, thereby effecting a considerable economy of fuel by heating the water preparatory to its entering the boiler by means of the surplus steam which is not required for working the engine.

Earthquakes and Eruptions.

The year 1878 has already seen more than its fair share of disastrous earthquakes and similar phenomena. There are slight tremblements de terre in one part or another of the earth's surface about once in three days, but it is only occasionally that serious outbursts occur which overwhelm cities, swallow up whole islands, or raise up the bed of the sea from a fathomless depth to a dangerous shoal. During the first half of the present year, however, the intensity of the shocks of earthquake and of volcanic eruptions has undoubtedly been on the increase, and if this continues the thousandth anniversary of the destruction of Herculaneum and Pompeii, which will occur next year, will be celebrated
in an appropriate, if an undesirable, manner, by the forces June, 1877.
In the whole of 1877 there occurred, according to the compilations of Professor Fuchs, 109 recorded earthquakes, though from our own observations we believe the number to have been somewhat larger. In the three months of
June, July, and August there were only 11 earthquakes;
while 34 occurred in September, October, and November, and the rest in the previous six months back to December 1, 1876. As usual, the most violent of these phenomena were those occurring in South America. The damage done to Iquique, Valparaiso, Lima, and other cities by the outbreak of May 9, 1877, was enormous, the vibrations recurring with startling rapidity, and lasting over several days. A few days later a submarine volcanic eruption occurred off the coast of Peru, which also did great damage to shipping. The effects of these disturbances were felt in all parts of the Pacific. During the year, several minor earthquakes,though of unusual intensity for the part of the world in which they were felt, occurred in Europe. Those of April 4, May 2, and October 8 in Switzerland, and of November 1 and 4 and December 22 at Lisbon, were the most alarming. Fortunately, little or no serious damage was done.
The volcanoes of Europe were unusually inactive during the year, but in South America, in Japan, and in the Pacific generally, the year was marked by several very violent volcanic explosions. The frequency with which outbreaks of this nature were observed in the open sea was a peculiarity of the year. Thus in February a very remarkable eruption occurred in the seas surrounding the Sandwich Islands, ten days after a violent outburst of the crater of Mauna Loa, on the mainland of the group, and a few weeks before another most remarkable outflow of lava from the celebrated lava lake of Kilauea. Here vast jets of liquid lava were ejected to a great height through the hardcrust of the solidifying lava of the lake, which had lain undisturbed for many years Much more serious was the eruption of Mount Cotopaxi in June, accompanied by terrible showers of ashes, dust, and mud, which were carried by the wind far and wide over the mud, which were carried by the wind far and wide over the
country, devastating the fair lands and destroying hundreds of lives. The insular volcano of Ooshima, in Japan, broke of lives. The insular volcano of Ooshima, in Japan, broke
out in flames and burning lava on January 4, and continued in violent action till the first week in February, causing, in combination with the earthquakes which accompanied it, disastrous loss of life.
Among the more noteworthy events of the year was the eruption of a new volcano in a district hitherto supposed to be free from volcanic disturbance-namely, on June11, in a new crater near the Colorado river, California. About the same time an earthquake was felt in Canada. The sub mergence of several islands in the great archipelago lying between the Malay Peninsula and Australia, the upheaval of new lands in the same district, and the observance of the effects of volcanic phenomena in the deep waters of the South Atlantic, and where the sea is some 20,000 feet deep, would have been sufficient of themselves to mark the past year as an uncommon period of strange volcanic phenomena. As already hinted, however, we believe that the current twelve months will, unless a sudden cessation of activity occurs, prove to be even more prolific of such events than any of its recent predecessors.-London Times.

India as a Wheat Producer.

The amount of wheat sent from India to England in 1877 has given rise to the belief that within a few years England would be practically independent of America with regard to this element of her food supply. The Madras Mail disputes the proposition, alleging that "the fact is, India exports not because she has a surplus, but because the people are too poor to retain the food now exported. Were the people able to afford it, every pound of grain produced would be eaten. A very large proportion of the inhabitants of this presidency do not know what a really hearty and satisfactory meal is from year's end to year's end. In Mad. ras the cultivators have to pay $£ 4,500,000$ annually in the shape of rent, and must sell their grain to get the cash needed to give to the tax-collector. Again, much of the grain exported goes to pay for the scanty clothing of the people, for the cotton fabrics worn are mainly of Lancashire weaving. As regards the wheat trade from the northwest provinces, it is clear that the greât export for a time was due to the people parting with their usual reserve What has been the result? Why, as the effect of the failure of a single harvest, Sir George Couper has had to encounter not merely scarcity, but actual famine."

Labor in Ireland

The United States Consuls at Dublin and Cork have forwarded to the Department of State specific information with regard to rates of wages in Ireland. The former re ports that the skilled mechanic gets per day 6 s .6 d ., and the ports that the skilled mechanic gets per day 6 s . 6 d ., and the
unskilled mechanic receives 17 s . 6 d . per week. Agricultu ral laborers are paid per day from 1s. 2d. to 2 s . 6d. perma nent, and from 2 s .6 d . to 3 s .6 d . in the busy season, the rate of wages varying very much according to locality and season. Near large towns the rate is much higher than in the country districts; also, in spring and harvest the rate is bigher than at other seasons.
The Consul at Cork reports that agricultural laborers get 48 cents a day; coal heavers, machinists, gas fitters, and bakers, $\$ 1.09$; masons, shoemakers, painters, and joiners, $\$ 1.21$. On public works, laborers earn from 48 to 60 cents a day. On the railways conductors receive $\$ 4.38$ to $\$ 7.29$ per week; engineers, $\$ 1.21$ to $\$ 1.70$ per day. Last summer the railway employes struck for an advance, but failed. The cost of living to the laborer and the mechanic is about $\$ 85$ per annum. Trade is much depressed, with many failures. Wages and cost of living have increased about one sixth since 1873.

