Srimutitic Amerira.

ESTABLISHED 1845.

MUNN \& CO., Ediinrs and Proprietors.
publisied meekly at
NO. BY PARK ROW, NEW YORK.
o. D. MUNY.
A. . e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.
One cong one year, postage included...
One cong, six months, postage included AN.
..$\$ 320$
..
160 gratisfor-One extra copy of The Scientific American will be supplied gratis for every clinb of Ave subscribers at
same proportionate rate. Postage prepaid.
adingie copies of any desired number of the SUPPLiment sent to one adisress on receipt of 10 cents.

MUNN \& CO., 37 Park Row, New York.
The Scientific American Supplement
is a distinct paper from the Scievtific American. THE SUPPLEMENT is issued weekly every number contains 16 octavopages, with handsome
cover.uniform in size with ScIENTIFIC AMERICAN. Terms of subscription for Supplenient, fo.00 a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country. Combined Rates. - The Scientific american and supplement
will be sent for one year. postage tree, on receipt of seven dollars. Both will be sent for one year. postage tree, on receipt of
papers to one address or different addresses, as desired. papers to one address or different addresses, as desired.
The safest was to remit is by draft, postal order, or registered letter
Address MUNN \& CO., 37 Park Row, N. Y.

Scientific American Export Edition.

The Scientific Amirican Export Edition is a large and splendid per odical, issued once a m δ nth. Each number contains about one hundred
large quarto pages, profusely illustrated, embracing: (1.) Most of the plates and pages of the four preceding weekly issues of the sciestific plates and pages of the four preceding weekly issues of the sciencific
AMERICAN, with its splendid engravings and valuable information: (2.) Commercial, trade, and manufacturing announcements of leading houses. Terms for Export Edition, 85.00 a - year, sent prepald to any part of the world. Single copies 50 cents. Manufacturers and others who desire
to secure foreign trade may have large, and handsomely displayed announcements published in this edition at a very moderate cost. The SciEvTIFIC AMERICAN Export Edition has a larate guaranteed circulation in all commercial places throughout the world. Address MUNN \& CO., 37 Park Row, New York.

VOL. XXXIX., No. 26. [New Series.] Thirty-third Year.
NEW YORK, SATURDAY, DECEMBER 28, 1878.

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT
 No. 156.

For the Week ending December 28, 1878.
engineering and mechanics.-Institution of Civil Engineers. The A vonmouth dock. The River Lea
Whitehaven Harbor and Dock works.
II. TECHNOLOGY.-Improvement in Sugar cane Mills, 3 engravings.-AT tiflcial Decortication of Trees by heat, 2 engravings.-Artesian Wells. The Artesian wells of San Francisco. Their depth, strata passed through, quantity and quallty of water, etc.. With map and two dia-
grams. Singular abundince of water.-The Niagara Falls Mill. DescripSions. Singular abundance of water.-The Niagara Falls M... Dencippower, with 1 illustration.
Photography in Natural Colors.-Condensed Milk
iII. FRENCH international exhibition of 1878.-New Rotary Printing Press for Illustrated Papers, 1 engraving.-A Californian ewel Casket.-Fowler's Hauling Engine, 1 engraving.-Engl:sh Fanning Mill, Elevator, and Weighng Machine, 1 engraving.
IV. Cilemistry and metallurgy.-Chas. Adolphe Wurtz. Biographical sketch, with enumeration of his services to chemistry. The Constitution of Matter in the Gaseous State. Lecture delivered before the Fellows of the Chemical Society, London,by Cuas.Adolpie WUrtz, Member de linstitut, Doyen Honoraire de la Faculte de Medecine de Paris. Explanation of the kineric theory of gases. Why it is
impossible to liquefy certain gases by pressure alone. The apparatus and processes of MM. Cailletet and Raoul Pictet in liquefying oxygen and hydrogen. The law of Avogadro.
V. ELECTRICITY, LIGHT, HEAT, ETC.-Telephone Im provements. figures.-Trouve's Micro-Telephone. 3 figures.
VI. Natural historf, geology, etc.- Professor Harkness, F.R. S. Biographical skctch, with portrait.-Air Temperature.-The Crater f Vesuvius. The recent eruption, with 1 illustration
VII. MISCELLANEOUS.-Remarkable Δ utomata. 1 illustration.-Jar diniere in Silver. 1 engraving.

Price 10 cents. For sale by all newsdealers.

THE END OF 1878.

With this number we close the thirty-ninth volume of the Scientific American, and with it the record of the year's events.
Does that record contain anything that will make 1878 a notable year in the calendar of the century? What are the claims of the year to the respect and memory of the future?
That a war in Europe has ended, and one in Asia begun: that Europe is still suffering financial and industrial depression, while our more favored land is well advanced toward a solid prosperity greater than we have known before; that the much talked of socialistic uprising in America has ended in talk, while in Europe that conspiracy against civilization remains a source of national peril; that we have enjoyed harvests of unrivaled bountifulness, while other regions-in South America, North Africa, India, and China-have been smitten with drought and famine. These occurrences, however big with importance to the present dwellers upon earth, will but faintly interest humanity in 1978, and have but small effect probably upon the world's welfare in future ages. Possibly some obscure inventor, perbaps so poor that he is troubled to raise money enough to pay his patent fees, ciple that will influence the future more than all these great events together, which will do more to signalize the year -just ending than the achievements of all other men combined. It may be that discoveries, now well known but little esteemed, contain the germs of scientific, social, and industrial revolutions. It is quite possible too that those recent discoveries and inventions, to which the world is looking for the grandest results, will quickly fade into comparative insignificance. Every age is blind to the elements of its own greatness; and, as a rule, the unheralded achievement is the one that after-ages chiefly magnify.
But, to drop philosophy for fact, what, that is specially noteworthy from the standpoint of the present, has been done during the past year? It has been a ycar of great activity in almost every region of effort. The outposts of every science bave been more or less advanced, and the
main army of occupation, pressing into regions of the unknown and the obscurely known, has moved forward perhaps as steadily as during any year of the past; yet few events stand out with special prominence, very few promise to open up new lives of research, new ficlds of industrial enterprise, or new interpretations of the phenomena of nature.
No striking geographical or geological discoveries have been made-unless we admit the caverns of Luray-and no finished, with the single exception, perhaps, of the transference of Cleopatra's Needle from the bank of the Nile to that of the Thames. In mechanics, inventions and improvements have been many and valuable; yct we fail to recall one that is radically novel. If the magnetic motor people ' dispute the assertion, we shall be happy to retract it on the submission of proof of their claims. In physics, the microphone has made much noise out of little; but that interesting toy cannot justly be accredited to 1878. Mr. Edison's microtasimeter promises to rank among the most powerful and valuable of scientific instruments for exploring the secrets of nature; but with the exception of its use in measuring the heat of stars and that of the sun's corona, its revelationsare prospective. The solareclipse of July 29, which was made notable by the first public employment of the tasimeter, is notable also for the opportunity it afforded for dcmonstrating the existence of one or more intra-Mercurial planets, first scen by American astronomers. The discovery of an active crater in the moon by Dr. Hermann Klein seems to prove that volcanic energy is still at work on our satellite; an inference very strongly corroborated by the later ob-
servations of Mr. Hammes, described in the Scientific servations of Mr. H
American last wcek.

During the latter part of the year the excitement in regard to the progress of the electric light presents a notable feature of the year's record. Apparently this is at present the field of greatest speculative and practical activity. The use of electric illumination is spreading rapidly, and there are on all stdes promises of the speedy practical solution of the great problem. As yet, however, with the exception of the Sawyer-Man lamp, no device which seriously threatens the supremacy of illuminating gas has been made public.
The fairly successful Exhibition at Paris, however important in its time, presented no feature or achievement to give it lasting fame. The duplexing of the Atlantic cable marks but a step, though an important onc, in a familiar path of progress. The same may be said of the discovery of one or two new metals in chemistry, and the successful synthesis of indigo. The recent claim of Mr. Lockyer that he is convinced of the essential oneness of the elements, and is able to demonstrate that all matter is fundamentally the same, is much more likely to mark an era in the history of scienceif it turns out to be true; and a century hence it may be the best known achievement of 1878.

PATENT SOITS,

A patent suit is now in progress between the "Tubular Lantern" and the "Buckeye Lantern" Companies, in which some interesting questions come up for consideration. The Tubular Lantern Company own a patent in which air is received into an annular chamber surrounding the chimney above the globe, from whence it passes through two pipes extending downward to another air chamber beneath the

The products of combustion as they rise through the chim ney draw in air from the lower air chamber, which is sup plied mainly as indicated above, and by this means a con stant supply of pure air is kept up to the burner. On top of the chimney are "deflecting plates," arranged to act as an ejector when a current of air strikes the lamp, and on the air chamber are similar deflecting plates, which act as an injector, by which means the equilibrium of the air pressure is kept up, and the flame is thus prevented from beng extinguished under an ordinary wind.
In the Buckeye lantern, manufactured at Bellaire, O., there is no chamber around the chimncy, and no pipes to carry the air downward; but there are two globes, one with in the other, so combined with the framework of the lamp that the air for the support of combustion is taken from the space between the globes, which is open at top to admit fresh air. except for a plate (similar to the reflector in ordi nary lanterns) which is set a little above the opening, and which is stated by the counsel for the complainants (Mr Thacher, of Chicago) to act as an injector to force air into the space between the globes, and in this he is borne out by the testimony of the complainant's expert. The defendant's counsel (Col. Dyer, of Washington, D. C.), takes the con trary ground that the plate referred to is nothing more than an ordinary reflector, and that even if the space between the globes is the equivalent of the annular air chamber in the complainant's patent, the reflector is in no sense an injector, in which he is supported by the testimony of the defendant's experts, who testify unqualificdly that the reflector acts rather as an ejector than as an injector, and claim that they can prove this by actual tests.
It will be seen from the above that there is a great differ ence in the construction of the lanterns, and that this differ ence causes considerable variation in the mode of operation of the two, inasmuch as in the "Tubular" lantern the equili brium of pressure is kept up by two columns of air travel ing at fast speed through small pipes, while in the "Buck eye" the air is taken from the chamber between the globes, which is of such capacity as to form a column of air coun terbalancing that in the flame chamber, by which means an equilibrium is kept up, which, from the large source of supply, is not so easily affected by extraneous currents, and hence needs no injector to regulate or increase the influx From this difference of construction and operation it is argued that the annular air chamber in one and the air reser voir in the other cannot be considered an equivalent for each other even if the same end is served by both, and that as the reflector does not force air into the reservoir, it cannot be the equivalent for the "deflecting plates" of the " Tubular" lantern, which is the main point in controversy, as lanterns having air chambers and tubes, substantially like hose in the "Tubular," were known long before the invers ion of complainant's lantern.
The introduction of the lantern in controversy in this suit the "Buckeye"-shows what can be done with a good invention, even if times are bad and money scarce. The company owning this patent have only been in operation a short time, and yet their sales of this lantern have of late averaged about 2,500 dozen per month, giving employment o about 150 hands, and distributing a large amount of money among a class of people sadly in want of i i.

A number of suits, upwards of thirty, we believe, have been commenced against different manufacturers and deal ers in " barbed wire fences," by Messrs. Coburn \& Thacher acting for the Washburn \& Moen Manufacturing Company, and I. L. Ellwood, who claim to hold patents cover ing the manufacture of barbed wire fence of any form. The defense set up is previous use, the defendants alleging that a barbed wire fence had been used some twenty years ago in Texas and Missouri. It would appear, however, that this point is doubted by the complainants, who bring a large number of witnesses to prove that such a fence had never been used in the places specified, and that no one except the witnesses for the defense, of which, however there are many, ever knew of such a fence having been made or used, and that at the best, even if it is admitted that such a fence was made, it could only be considered as an abandoned experiment, or as a "lost art," like the Connor safe, in the Fitzgerald case.

THE SCIENTIFIC AMERICAN AS AN EDUCATOR.

It is becoming more and more the custom of manufactur ers to express their approval of the Scientific American, and their desire to benefit their employés by presenting the atter with annual subscriptions to this paper. We are assured that the practice is directly profitable to the givers in ncreasing the kindliness of the rclations between the employer and the employed, and also-more materially-in ugmenting the skill and intelligence of the recipients of the gift.
We are indeed very frequently in receipt of letters from readers of the Scientific American-both employers and employed-expressing their indebtedness to it for very much of their skill, intelligence, and success in lifc. Not unfrequently men write saying, "I am foreman of So \& So's shop," or, " I am proprietor of such or such an establishment," or, "I am the patentee of this, that,or the other successful in vention, and I owe everything to the suggestions, informa tion, and practical habits of mind acquired in the diligent perusal of the Scientific American." We need not say that such letters are extremely gratifying to us, while they intensify our desire to make the paper more and more worthy of its readers' approval.
As an illustration of the advantage which may accrue not
only to the reader of the Scientific American, but to his lication, but owing to lack of funds its printing is delayed. employer as well, we venture to reproduce a portion of a The 221 photographs taken by the transit of Venus parties communication just received from a neighboring city, suppressing only such parts as would betray the confidence of the writer and his unfamiliarity with the spelling book. The dircctness, force, and eloquent sincerity of the story could not be improved by the most skillful rhetorician. The writer says:

- A few years ago I had the fortune to be placed over the machinery department of a firm in this city. I was to fill a position until then occupied by a man of intellect and experience. I was nineteen years old, and addicted to many of the evil habits of young men of that age. I was pursuing a useless and unprofitable career, both to the disadvantage of myself and those around me. I managed to keep my position, and also to keep the work up to the mark of former ycars, in the matter of cost and amount manufactured. Two years passed. The machinery was getting very badly imparred. I knew I could not keep up the work if the machinery was not repaired properly. I yearned for tion. I inquired of a newsdealer for some work on ma chinery, but having none, be sent me a copy of the Scientific American, which, he said, would give me the information I wanted. My joy was overshadowed when I perused its pages without understanding what I was reading about. That gives you the limit of my education at that
time. I read it again, and a beam of enlightenment came over my senses. I tried it again and again. I believe I read that copy twenty-five times, jumping from one article to another, or to the one I thought I was most likely to derive some information from, each time bringing a new and encouraging result. I became a subscriber through the newsman, and bave never missed a copy since.
" What is the restlt? I will try to tell in part, as no man living can tell all. Thereis an increase of 20 percent in the amount of stock turned out, and a large increase in the demand for our manufactures.

There is a saving of one third in the expense of articles pertaining to the manu-
facture that is, in belting, oil, etc. The help get better facture that is, in belting, oil, etc. The help
wages and steadier employment than ever before.
wages and steadier employment than ever before.
In fine, the firm are in a fair way of becoming as well known as the Scientific American, to which I owe all the advantages I have gained, both in relation to my private and public career. I now superintend the entire manufac-
ture, and have charge of the whole inside business, as well ture, and have charge of the whole inside business, as well as the machinery department.
Our readers will pardon the length of the citation for its real merit. It is but one of a multitude of instances which have come to our knowledge, of young men of inherent force, but untrained and ignorant, who, through a new life of thoughtfulness and study aroused and sustained by the weekly instructions and suggestions of the Scientific American, have developed rapidly and profitably to themselves and their employers. In every workshop will be found rough diamonds of this sort, possibly wasting their time and strength in dissipation and thoughtlessness, with whom a subscription to the Scientific American might work wonders. Many employers have assured us that it
pays them to provide the paper for such workmen. It is not a costly experiment to try, at all events; and, in view of communications like the foregoing, we may be pardoned the suggestion that the experiment be more generally tried.

THE NATIONAL OBSERVATORY.

Notwithstanding the observations of the numerous celestial phenomena which have occurred during the year about closing have somewhat interfered with the regular work of the Observatory, yet a large amount of it has been done, and the observations of the year are now being reduced. Dur-
ing the year the 26 inch equatorial, under the charge of Professors Hall and Holden, has been pretty constantly employed in observing satellites, nebulæ, and comets. The optical power of this instrument is very fine, and was much praised by the foreign astronomers who visited it during the past year, but they considered its mounting as too light, and the justice of this criticism is shown in slight tremors in right ascension, though observations show that during the last five years the pole of the instrument has changed but the fraction of a minute of arc. Some changes, however, will have to be made, as the heavy dome makes it difficult to revolve. The continued observations of the ring and satellites of Saturn, which were made until the planet approached too near the sun, prove that Bessel's elements of the ring are very nearly correct. Frequent observations were made of the satellites of Mars, Uranus, and Neptune, and an unsuccessful search made for a satellite to Venus.
The thirty double stars selected by Otto Struve, of Pulkowa Observatory, for the determination of personal errors, were observed by Professor Hall, each star being observed six nights on an average. The different combinations of the angles and the distances of the stars in the trapezium of Orion were measured first with bright wires in a dark field, and then with dark wires in a bright field, six times by each method, and an adjustment of the measurements effected by the method of least squares. Sirius and its companion have been carefully observed with a view of settling the question of Sirius.
Nearly 3,500 observations have been made by Professors Eastman and Frisby and Assistant Astronomers Skinner, Eastman and Frisby and Assistant Asirle. The work of
Paul, and Pritchett, with the transit circle.
this instrument for former years has been prepared for pub-
in 1874 have been measured by Professor Harkness for the corrections of minute errors, such as were due to the shrinkage of the collodion and like causes. The observations of thetransit of Mercury and the total solar eclipse have been compiled in detail, and their computation and reduction are now going on. The publications of the Observatory have been freely distributed to other observatories, institutions, and astronomers, and numerous valuable additions to the library have been received in exchange.

AN AMENDMENT TO DISCOURAGE INVENTION.

It is to be hoped that before final action is taken upon Mr Wadleigh's bill for the revision of the Patent Law (Senate Bill 300), more particular and searching inquiry will be made with regard to the probable effect of Section 11. As it stands, this section provides that, in addition to the fees collected when a patent is applied for and when it is issued, there shall be paid to the Commissioner a duty of fifty dollars at the end of the first four years, and another duty of one hundred dollars at the end of the second four years, after the patent is issued; thus increasing the cost of patents more than fivefold. The failure of either of these payments it is further provided, will make void the patent. There are two very strong reasons why this section should not be adopted as part of the patent law.
In the first place, the patent system is already more than self-sustaining, the receipts from existing fees largely exceeding the cost of maintaining the Patent Office; and there is no good reason why the United States Government should seek to increase its revenues by laying a special tax upon inventors. Besides, the patent fees are sufficiently burdensome already. If any change is made in them they should rather be reduced, as they could be materially without diminishing in any way the efficiency of the office.

In the scond place, the assumption on which the proposed amendment is based is altogether fallacious. It is said that a great many patents are worthless. They are never developed. Yet they stand in the way of industrial progress, in that they prevent the use of the idea or device they cover in a more practicable way; or they are made the basis of
claims for damages when other men have introduced the idea successfully. In all such cases, however, it is the man that has invaded, or that wants to invade, a patent right, not condemned and killed. But that is apart from the point at issue. It is said that there are a great many worthless patent that ought to be put out of the way; and that it can be done most readily by levying the proposed duties. If a patent has any valuc at all, say the advocates of this change, t will be more than worth paying for; and four years is ample time for demonstrating the worth or worthlessness of any invention. All this is inconsistent with fact and experience. The more novel an invention is the less the likelihood of its being immediately profitable. Indeed, the speedy evelopment of a strikingly useful invention is quite excep. tional; and with the average of inventions the time that elapses before they are assuredly profitable is oftener ten
years than four or eight But the chief fallacyt.
But the chief fallacy in volved in the proposed amendment ways to be measured by the ability of the inventor to pay heavy fee: if he can pay $\$ 185$, his invention is good; if he cannot, it is bad, and should be put out of the way. Under this rule there is scarcely an invention of exceptional merit, perbaps not one of the great inventions which have done so much to hasten our progress as a nation, that would not
have been summarily extinguished. Their inventors have found them anything but profitable during the first few years, sometimes during the entire life of the patent. It would be sheer cruclty, and as impolitic as cruel, to add to the discouragements of the inventor the risk of losing al through inability to meet severe and needless demands.
Indeed it is altogether too common, in the discussion of this question, to overlook the fact that the majority of inventors are poor men, and that the public, which is ready
enough to laud an inventor after he has compelled recognition of his merits, is only too ready to give him the cold shoulder while he is struggling against poverty and the in ertia of professional routine and popular ignorance. The assurance that a patent once granted is property, that it will insure the protection of his rights when their value has been demonstrated, spurs the inventor on to efforts which very frequently make him a benefactor to his age and country. In multitudes of cases important improvements or inventor's inability to command the relatively small fees already demanded at the Patent Office. To add one hundred and fifty dollars to them, as proposed, would put the hope of securing a patent out of their thoughts entirely, and in thousands of cases would result in putting an extinguisher upon their creative labors. The country cannot afford to bave its best workers so seriously hampered, so needlessly Thiscouraged.
This is not a theoretical objection. The practical effect nation that has tried them. In England, far example, it is an admitted fact that poor men do not invent, or if they do the public reaps small benefit from their labors. Like the senior Bessemer they carry the secrets of their discoveries to the grave: and improvements of great industrial value are
liberal patent system they would remain on record part of the stock of
years.

THE TUNNEL UNDER THE BRITISH CHANNEL.

The reason why the Channel Tunnel Company recently ceased their operations in St. Margaret's Bay is stated to be that, when the reports as to the soundings between Sangatte and St. Margaret's Bay were handed in by the surveyors, it was found that to cut a tunnel between those points would entail an enormous amount of work in sinking. The site in question has, therefore, been finally abandoned. The scheme now before the company provides for the sinking of a new shaft at or close to Dover.
The site on the French side at Sangatte, near Boulogne, is still looked upon as the best that could be chosen for the commencement of the tunnel. The shaft sunk there is already 70 meters in depth, with a diameter of 2 meters, and the engineers consider that when they have got 10 meters further down the horizontal cutting may be commenced.
The engineers of both countries agree that the French opening of the tunnel is the most difficult part of the undertaking, as a clayey soil has to be dealt with instead of chalk, and the incursion of water causes much trouble.

PROTECTION TO BANES.

A correspondent suggests that an insurance society could be organized, which, for a moderate premium, could insure bank premises against burglary. It would then be the duty of trained inspectors to examine into the security of the safes and locks, and to order the adoption of the latest and strongest safeguards; and should these be broken through, the reserve fund of the insurancecompany would make good the loss, which would thus be equally distributed over the community.
Possibly an organization of this sort might be useful. It would have to be very careful in its agents, however, lest it be converted into a source of danger through the collusion of inspectors and burglars. In this, as in other cases, preven ion is better than cure; it would be better, as well as cheaper for the banks to forestall the burglars with scientific safeguards. There is no fear of time-locks and electric alarms betraying combinations.

THE HOG CHOLERA COMMISSION

Congress having appropriated at the previous session $\$ 10,000$ to pay the expenses of investigating the nature and cause of the diseases prevalent among swine, the Commissioner of Agriculture appointed a number of competent gen tlemen in the States of Indiana, Illinois, Inwa, Nebraska, Kansas, Missouri, North Carolina, Virginia, and the Western part of New York, who have been engaged in prosecuting heir investigations, and have nearly all submitted extended reports, which have been carefully collated and the results embodied in a report that will shortly be presented to Congress. From these papers it appears that the identity of the disease in all portions of the country is pretty thoroughly established, that the term "hog cholera" appears to be a misnomer, and that in all cases of the disease the lungs appear to be affected. Among the gentlemen engaged in the investigation are Dr. H. J. Detmos, the veterinary writer for the Chicago Tribune; Professor Law, of the Cornell University; Dr. D. W. Voyles, of New Albany, Ind., and Dr. Salmon, of North Carolina, from whose knowledge it is supposed that the results of the investigation will prove of the highest importance in throwing light on a subject which has never been fully understood, and in checking a disease whose ravages yearly destroy a large portion of the revenue of our stock raisers and farmers.

Another Adverse Trade Mark Decision.
Some time ago a bill in equity was filed by Day \& Frick, soap manufacturers, of Philadelphia, against P. Walls, anther extensive soap manufacturer, in which an injunction was asked to restrain the employment of certain labels and wrappers used by Walls in his soaps. These labels, it was alleged, contained language similar to that registered as a trade mark at Washington by Day \& Frick. The description secured by them in designating the soaps were the words " bleacher," " bleaching," together with a device of a pair of scales and other signs, and it was claimed that the use of this trade mark by Walls was an infringement
In behalf of W alls, his counsel, Pierce Archer, subsequently filed a demurrer to the bill, claiming that the act of Congress was ultra vires-beyond the constitutional powers which authorize Congress " to promote the progress of science and the useful arts by securing for a limited time to authors and inventors the exclusive right to their respective writings and discoveries." A trade mark, Mr. Archer held, was neither an invention nor a writing, but simply an ad ertisement, and as such was not within the paleof the section. Judge Cadwalader has sustained Mr. Archer's objections, n the ground that the court has no jurisdiction to enter ain conflicts over trade marks. It is probable that this case will be taken to the Supreme Court of the United States.

Manes, Revolving Furnace.
The revolving furnace recently patented by Mr. James Manes, of 1844 Fulton Avenue, Brooklyn, N. Y. (formerly of New Haven, Conn.), has beenapplied to the extraction of quicksilver from cinnabar, to desulphurizing ores, drying fertilizers, and animal and vegetable matters, also for making gas. We are informed that it is economical and effecfume, and accomplishes its work without allowing injurious fumes to escape.

