A HAIRY WATER TORTOISE FROM CHINA.
Through the kindness of Mr. White, son of the late Lord Mayor, I am enabled to give a representation of a most interesting little creature which he himself brought from China. It is a terrapin or water tortoise, which apparently has hairs growing out from its back. When it first arrived it seemed very unwell, and I do not wonder, for the poor little thing had not had anything to eat for some months. Knowing it was very intolerant of cold, I placed it in warm water. and kept it in a warm place, and the little thing shortly, to my delight, began to feed from my hand. It will snap at and devour little bits of meat, fish, shrimps, etc. As the little animal swims, the fiber of the vegetable growth hangs away from him so as to give him the appearance of an animated bunch of weeds. His face is very intelligent.

I do not know whether the growth upon this terrapin's back has been produced artificially or naturally. It is simply a water grass, something like the weedy material growing on decaying woodwork and lock gates of rivers. It is possible that the ingenious Cbinese may have some way of doctoring up the living specimens of terrapins, of which I understand considerable numbers exist in the ditches and marshes of China. These Chinese, as we are all aware, are stated to have the art of making the large fresh water pearl-bearing muscles secrete pearls, and cover over metal images placed within the shells for that purpose. If they can do this with the pearl shell, I do not see that it is impossible for them to make this vegetable material grow upon the back of a tortoise.
The tortoise being a sacred emblem in China the Chinese make pets of the hairy tortoise, which they keep in basins of water during the summer months, and bury in sand during winter. A small lake in the province or Kiang-su is famous for these so-called hairy tortoises, and many persons earn a livelihood by the sale of these curious little pets, which are about two inches long.
1 have been to the British Museum to see if I could find anything like this hairy terrapin, but could not do so. I siall take the liberty of forwarding this article to His Excellency the Chinese Ambassador, who, I have no doubt, with his usual kindness, will obtain some further information about this great curiosity.-Frank Buckland, in Land and Water.

## THE PADDLE FISH OF THE MIS8I8SIPPI.

by dantel c. beard.
Love for natural history has often led me to consult books upon that subject in search of descriptions and illustrations of creatures captured in my wanderings. I have been struck, as no doubt have many others, by the absence of any illustration and the very meager descriptions given of many of our most curious native specimens. Especially is this noticeable among the fish and reptiles. Indeed I have often had considerable difficulty in finding the proper names for creatures quite common in some sections of our country. This fact, in addition to a natural love for and interest in this sub-
ject, has induced me to make careful drawings of many of our native fish.
In the turbid waters of the great Mississippi and its tributaries, swim curiosities and monsters entirely unknown in the Eastern States, and, to judge from the short and unsatisfactory descriptions given, but little known to our scientists.
Down in the southern Mississippi and its sluggish bayous lurks a strange and uncouth fish, known to the natives as the alligator gar. Thisferocious creature of ten attains the length of five and six feet, his mouth is large, broad, and armed with sharp teeth, and his body is covered with an almost impervious armor.
Wallowing in the mud of the bottom, like some species of marine swine, are enormous cat fish, " mud cats," frequently weighing 100 lbs. Huge slimy animals, their large gaping
ganoid an instrument well adapted for digging in search of food, for such, I am informed, is its habit.
This illustration is from a specimen secured at St. Louis, Mo. It measures from tip of tail to tip of nose three feet and four and four fifths inches; length of nose, or paddles, from tip to point between the eyes, eleven and one quarter inches-a little over one third the length of the fish. Color silvery white upon the belly, darkening gradually to the lateral line, above this to a bluish tint. deepening into a blackish blue on the back; no scales; skin is the same texture and appearance as the blue catfish. Eyes small, and on the under sides of the head, one quarter inch in front of the lower lip, one eighth inch in diameter; two pairs of nostrils. one quarter inch in front of the eyes, and one pair of appa rent nostrils just over the back of the mouth. Lateral line has the appearance of a vein with small branches running about one sixteenth of an inchand disappearing
in the skin. The paddle is composed of a light porous bony substance, knit together by a network of bony stars of from six to eight rays each, that become elongated towards the center of the paddle, forming a ridge, which runsto a point where the gill covers join with the top of the bead. Gill covers fleshy; oper culum and suboperculum marked by fan-like rays. The length of gill covers, left side from extreme point to where it joined the top of the head, eight inches; while the same on the right side measured but four and a half inches. The lower jaw commences at a point immediately under the eyes; mouth broad, extending back three inches. No teeth perceptible to the naked eye, but could be felt upon the upper lip. I have been informed that when quite young they have sharp teeth upon the upper and lower jaws.
The illustration will show location of fins, which are composed of soft rays. This de-

## THE HAIRY WATER TORTOISE.

mouths, small eyes, yellow and blotched sides, so fat and flabby, all go to make rather a disgusting creature, and yet with all their unattractive exteriors they are valued by many as a toothsome article of food, and by the negroes are con sidered a special delicacy. But by far the most comical and the oddest individual is the one of which $I$ have given you a picture.
" Shovel nose," "paddle fish," and " spoon bill" are a few of his aliases when at home where he lives, but among the initiated he is known as the Spatularia folium. He is found, as far as I know, only in the Mississippi and its inflowing southern streams. I have never heard of any speci mens being captured excepting in nets. The bony structure of the mouth would render it rather difficult to catch this fish with any ordinary hook. According to my personal observation the maximum length of the paddle fish is from three to four feet; no doubt some grow to a much greater size.
To my know ledge they are not eaten except by the darkies. The location of the fins, the shape and construction of the tail, and omitting the long exaggerated snout, the general appearance is that of the sturgeon. Inhabiting the streams with soft yielding bottoms nature has bestowed upon this
 scription will be sufficient, I hope, to give a general idea of this most curious fish.

## The Osage Orange.

The Osage orange, otherwise known as bois d'arc (bow wood) or bodock (Maclura aurantiaca), is a beautiful and val uable tree on the banks of the Arkansas, where it is a native, and where it often attains a height of 60 feet, although in the Eastern States it is rarely planted except for hedges; its value for this purpose being due to its immunity from disease and the attacks of insects. This tree is hardy much further north than its native home, and endures the winter perfectly well even in the vicinity of New York city, and it is somewhat surprising that it is not oftener cultivated, inasmuch as it is one of our most valuable native woods. A writer in the Cultivator and Country Gentleman says of it, "that either for rapid growth, hardiness, durability of timber, habit and form, density of shade, and general beauty of shape and outline, when growing by itself, it is ten times more valuable, desirable, and beautiful than the catalpa of any variety of which we have lately heard so much." He remarks further that, "after twenty years' observation of it, were he about to plant a grove or lay out a timber belt for

shelter and ornament, he knows of nothing that he would insulated with asphalt and hemp, and also one inclosed in sooner select than the Osage orange. The young plants may glass beads and in a lead pipe. This also failed. Downing's be procured abundantly and cheaply; they start as surely as any of the soft-wooded trees; they grow rapidly, stand heat and drought admirably, and are impatient only of wet feet, so they do not take kindly to low and wet situations. Not only is the timber very hard and very durable, but it has great beauty of grain, and when sawed into veneers or plank and used in solid form, it may be made, like black walnut
or mahogany, into office or household furniture of the most or mahogany, into office or household furniture of the most
attractive style. Its durability is quite wonderful and deserves to be enlarged upon. Where a hedge has been winter killed, as is sometimes the case in the North, when an in tensely cold winter follows a hot and growing season, the dead fence will sometimes stand for years and perform the office of a live one. Young trees of not more than two or shree inches in diameter, or the limbs of maturer ones of the same size, are not only stronger and stiffer than any other wood that can be procured, but as vine stakes they outlast any wood that has yet been tried. When dry the wood is as hard as hickory and as heavy as oak, and this may prove an objection to its being sawed into boards or planks for building or fencing
To this tribute to the valuable qualities of the Osage orange we may add a few further details given by other authorities. Une writer, for instance, states that those who live where the tree abounds say that while the exposed wood may waste awaly gradually, through the action of the elements, yet a rotten or decayed stick is never seen. The wood, which is of a fine yellow color, close-grained, hard, strong, and elastic, changes but little with alternate wetting and drying, and in addition to its other industrial uses is said to be especially valuable for wheels. The bark of the tree affords a fiber similar to that of the paper mulberry, and the wood abounds in a yellow coloring matter, which is especially abundant in the roots, and of an intense orange shade. The well known yellow dyewood, fustic, is the product of an allied species, Maclura tinctoriu, growing in Central and South America.

## The Milk of the ciow Tree.

No tree aroused the imagination of Humboldt so keenly as the Broximuin galactodendron, or Palo de leche, or cow tree, which grows upon the slopes of the Cordilleras of Venezuela. As the nutritious juice of this tree is allied very closely to the rubber tree of Brazil-and, indeed, may yet come to supply a rubber to the European markets-the following account of its composition, communicated to the French Academy of Sciences by M. Boussingault, may not be without interest. The cow tree grows to a height of from 15 to 20 meters; its leaves are oblong, alternate, and terminated by points. The creamy juice is obtained by cutting into the inner bark. It is used by the natives in place of cow's milk. The analysis of 100 parts of the milk, containing 42 parts of fixed matter, is as follows:
Wax and saponaceous matter, $35 \cdot 2$; sugary substances, 2.8 ; caseine, albumen, 1.7 ; earths, alkalies, phosphates, 0.5 ; indeterminate substances, 1.8 ; water, $58.0-100 \cdot 0$.

The cream of the cow, according to an analysis of $M$. eannier, contains:
Butter, $34 \cdot 3$; milk sugar, 4.0 ; caseine and phosphate, 3.5 ; water. $58 \cdot 2-100 \cdot 0$.
It will be observed that wax appears in the vegetable milk in about the same proportion as butter in the animal.

## Insulation by Gutta Percha.

A suit was brought, in 1872, by Clinton G. Colgate, as signee of Arthur N. Eastman, against the Western Union Telegraph Company for an injunction and an accounting of profits, for the use of an invention patented by George B. Simpson. The patent claimed the insulation of telegraph wire with gutta percha, thus creating a submarine conductor of electricity. The inventor claimed to be the originator of submarine cables, and declared that it was to his invention that the success of the Atlantic cables was due. The attorncys of the Western Union Telegraph Company testified upon the trial that the company had in use about 60,000 miles of telegraph wire in which gutta percha is used as an insulator.

After six years of litigation a decision was reached in this case November 25, Judge Blatchford, of the U. S. Circuit Court, deciding that on all the points at issue the plaintiff had established his case. It is said that the case will be appealed to the U. S. Supreme Court, by the Western Union Telegraph Company.
The history of Mr. Simpson's long protracted fight with the Patent Office before his right was acknowledged is not less interesting for the exhibition it affords of pluck and persistence on the part of the inventor than for the illustration it furnishes of the injustice that may come through a misconception of the duties of the Patent Commissioner. In view of the vital importance of Simpson's invention to the success of telegraphy the world over, the following story of his efforts, as brought out during the trial, will prove of interest to our readers.
Gutta percha was imported into England from the East Indies about 1845 , and was there used as a mastic cement and as a plastic material for covering reins, straps, and bands, and for moulding various articles. Its insulating propertics were, however, not discovered at that time. In 1845 Professor Morse attempted to insulate a telegraph wire
with beeswax, asphaltum, and cotton yarn. This mode of with beeswax, asphaltum, and cotton yarn. This mode of tried to carry a wire across the Hudson River at Fort Lee


#### Abstract

line from Philadelphia to New York tried India rubber as an


 insulator for aerial wires in the spring of 1848, but this also failed. The first Magnetic Telegraph Company, or Southern Telegraph Line, tried wires covered with asphaltum and in lead pipes in the fall of 1847, at various points on their line, particularly at Passaic River.It is claimed that the first publication in England of the insulating properties of gutta percha was made by Professor Faraday, in March, 1848. Prior to this time, however. George B. Simpson, the inventor in this case, bad filed an application for a patent in the United States Patent Office, claiming the insulation of telegraph wire with gutta percha. This application was dated November 22, 1847, and was sworn to and filed in January, 1848, more than a month before Faraday's announcement. The inventor at that time was too poor to pay the fee of the Patent Office, and continued to be in the greatest poverty all his life. He filed a second or amended application for the patent in February, 1848, and a third in April, 1849, when he succeeded in paying the Patent Office fee of $\$ 30$ by the assistance of the late Horace H. Day. He exhibited his invention in Baltimore in the spring and fall of 1848, and it was there tested and found successful. He also, as early as December, 1847, cxhibited his invention to the late Hon. Amos Kendall and F. O. J. Smith. in Cincinnati. In 1850 his application was erroneously rejected by the Patent Office, and he was referred to the officers of the Magnetic Telegraph Company, including Mr. Kendall, as alleged prior inventors, all of whom, it appeared subsequently, derived the knowledge they received on the subject from him. The Patent Office repulsed his repeated applications. He was compelled to withdraw his fee by his agreement with Day. He worked his way out to the Pacific between 1852 and 1857, in the hope of obtaining money to renew and prosecute his application. Returning in 1858, he found his invention largely in use. He had accumulated a little money, and promptly renewed his application for the patent. He was again rejected by the Patent Office, which now confessed that the previous action in rejecting him had patent.
He persevered from 1858 to 1866, filing repeated applications with all the Commissioners of Patents who were in office during that time, and in 1862 presented an application to Congress for relief, and received a most favorable report on the originality and novelty of his invention. Finally, in 1867, after twenty years' litigation in the Patent Ofice, his efforts were crowned with success, and a patent was issued to him as the originator of the first practical method of constructing an ocean telegraph. Simpson, however, died a few months after the grant of the patent. He was then employed as paymaster in the United States army-a position procured through the influence of persons who were interested in his endeavors to secure his rights. He died of yellow fever, in New Orleans, in October, 1867.

## Duplexing the Atlantic Cable

The simultaneous transmission of two telegraphic mes sages in opposite directions upon one wire, now known by the name of duplex telegraphy, dates back from the year 1853. In that year Dr. Gintl, the director of state telegraphs in Austria, described a method by which this feat could be accomplished, and in July of the same year the method suggested by Gintl was tried between Prague and Vienna. An improvement on this method was suggested by a German Berlin, and other workers at this subject. Nevertheless, owing to practical difficulties, the experiments were little more than interesting additions to our knowledge. So little hope, indeed, was there of the practical realization of this important matter that, in a standard work on telegraphy, published in 1867, after describing the early methods of du plex telegraphy, the author remarks: "Systems of telegraphing in opposite directions, and of telegraphing in the same direction more than one message at a time, must be looked upon as little more than feats in 'intellectual!gymnastics,' very beautiful in their way, but quite useless in a practical point of view." Such assertions should teach all scien tific writers the lesson of "hoping all things not impossible, believing all things not improbable," an attitude of mind which, Sir John Herschel remarks, should always charac terize the natural philosopher, and which, in the present day, is certainly the safest one. Within six years of the publication of the foregoing statement duplex telegraphy was not only largely employed in actual telegraphy, but its use on certain busy lines became absolutely indispensable The change from theoretical to practical success is due to an American, Mr. J. B. Stearns, who, in 1872, succeeded in overcoming the main obstacle in duplex telegraphy, namely, what is known as the static discharge from the line. This Stearns accomplished by using a " condenser;" and further, he developed a system of "duplexing" the line similar to the principle of the Wheatstone bridge.
More or less successful attempts were afterwards made to duplex submarine cables, and in the early part of 1877 Mr . J. Muirhead succeeded. in duplexing the cables of the Eastern Telegraph Company by his artificial condensers. But we believe that his success was only partial. Subsequently
Mr. Muirhead has been at work duplexing the Direct United States Cable, with some prospect of success, and lately Stearns, who may be called the father of duplex telegraphy,
the Anglo-American cable. In a message received by Mr . W. H. Preece, Mr. Stearns says, "I managed to get some specimens for you this morning, though we had no time to make the balance especially perfect for the purpose."

All the messages now sent across the Atlantic are automatically registered by means of Sir W. Thomson's delicate and beautiful siphon recorder, which spirts out little jets of ink in a fine stream on a moving ribbon of paper. When no current passes the ink marks form a straight line, but a current causes this line to deviate to the right or left, according to the direction of current. Hence the ordinary right and left strokes of a necdle instrument, or the long and short dashes of a Morse, are indicated by marks above and below the middle line.
The essence of duplex telegraphy is to obtain an electrical balance round on the line, such that the sending instrument is not affected by currents circulating round it coming from the sending end, but only by currents received from the opposite end, and vice versa. Hence, if the balance be once obtained, double transmission is possible. This balance Stearns has succeeded in obtaining by the use of his system as applied to land lines, and without the aid of the additional arrangements of artificial condensers used by Dr. Muirhead. -Nature.

## ASTRONOMICAL NOTES.

## by berlin h. wright

Penn Yan, N. Y., Saturday, December 21, 1878. The following calculations are adapted to the latitude of New York city, and are expressed in true or clock time, being for the date given in the caption when not otherwise stated: planets.

frist masertude stars, erc.


Mars will be $5^{\circ}$ north of the moon December 21. Before the discovery of the moons of Mars there was no accurate metiod of calculating the mass of the planet. Laplace, in his "Celestial Mechanics," gives the mass as ${ }_{184^{\frac{1}{8}} 0^{\frac{1}{82}}}$ of the sun. Prof. Asaph Hall, the distinguished discoverer of the small Martial satellites, has calculated the mass from the motion of the satellites, and announces the result in "Observations and Orbits of the Satellites of Mars, with data for 1879." The mass of the sun being unity, he finds that of Mars to be $\begin{gathered} \\ \frac{1}{9} 500 \\ \text {, with a very small possible error, which, }\end{gathered}$ hethinks, will be eliminated in 1879 . Jupiter will be about $1^{\circ}$ south of the moon December 26.

## American Exports and Imports

The gold values of the exports of merchandise from the United States, and imports of merchandise into the United States, during the last fiscal year, as appears from returns made to and compiled by the Bureau of Statistics, are ollows:

## Exports of domestic merchandise. <br> Exports of foreign merchandise.

. . $8680,709,268$
$14,156,498$
Total exports of merchandise.
694,865,766
Imports of merchandise. 437,051,532

Excess of exports over imports of mer'dise. $\$ 257,814,234$
Compared with the previous year, the importations are less by $\$ 14,271,594$, and the exportations are greater by \$92,390,546.
The annual average of the excess of imports over exports of merchandise. for the ten years ended June 30, 1873, was \$104,706.922; but during the last three years there has been an excess of exports over imports as follows: In 1876 $\$ 79,643,481$; in $1877, \$ 151,152,094$; in 1878, $\$ 257,814,234$.

## Results of the Paris Exhibition

The total admissions to the late Paris Exhibition were 6,032,725, against a total for the Centennial of $9,910,966$ The Exhibition at Paris, however, was open more than it month longer than the one at Philadelphia, while the actual receipts at the latter place were about 50 per cent larger than at the former. This yoar at Paris, as compared with 1867, shows nearly double the number of admissions, and an increase of 75 per cent in receipts. In spite of this increase the Exhibition held during the Empire involved an expenditure of considerably less money. In 1878, 45,000,000 francs were appropriated, and a deficit is reported of $15,000,000$ francs more.
Remember that the Scientific American is published very week, and that a single number contains as much matter as many of our monthlies. Try the paper one year, and you will never do without it.

