lying upon the vein in the upper one thousand feet of rock. low men. My friends, I bave lived to see great progress and State. Yet many interesting and important facts have alBclow this it is known to be golng on for fifteen hundred improvement in the agriculture and horticulture of our ready been ascertained. The general want of knowe fect further. At 2,400 feet it is nearly uniform, neither in- country, much of which may be primarily traced to the crease nor decrease being observed. The miners cut through singular bands of hot and cold rocks, a fact which seems to suggest that the origin of the local heat is the motion which is taking place in tangential and orthogonal directions in the earth's crust as the result of its slow contraction by cooling. It is thought the lode will continue hot, but not increasingly so.

ASTRONOMICAL NOTES.

by bering h. wriegt.
Penn Yan, N. Y., Saturday, November 16, 1878. The following calculations are adapted to the latitude of New York city, and are expressed in truc or clock time, being for the date given in the caption when not otherwise stated

Venus rises.
Mars risees...
Jupiter sets.
 FIRST MAGNITUDE stars, Etc.

Alpheratz in meridian Mira (sar.) ir meridinn Algol (var.) in mr ridian. 7 stars (Pleiades) in merid Capella in meridian Rigel rises Betelleuse rises Sirius rises

818 eve.	Procyon rises.
1029 eve.	Regulus rises
. 1116 ceve.	Spica rises
d. 11568 eve. 048 mo 0	Arcturus rises
12 T mo.	Vega sets...
753 eve .	Altair sets
739 eve.	Deneb sets
955 eve.	Fomalhaut in m

REMARKS.
enterprise and labors of Massachusetts men. Suftice it to say, that, from the day when Governor Endicott planted his pear tree at Salem, which still lives; from the day that Perigrine White planted his apple tree at Marshfield, Mass.; from the day when our society was formed it has stood pro-
minently before the world as a leader and patron of agricultural and horticultural science. How marvelous the progress in our own day! How grand the march of horticulture since the establishment of our own society! It is scarcely fifty years since the Massachusetts Horticultural Society was formed. Then there were but few horticultural and agricultural societies in our land; now they are counted by thousands, and are scattercd over the continent, all working
harmoniously for the promotion of these arts. Then there was scarcely a nursery of any note west, and only a few east of the Hudson river; now they are planted from one shore of our country to the other, and among them many of the largest in the world. Then Mr. Hovey had not sowed the sced of his strawberry and other fruits, which have since immortalized his name, or commenced laying out his extensive grounds and building his houses in Cambridge. Then I had not planted a seed of the camellia, the azalea, pear or grape, nor cven attempted the bybridization of a plant; now our American fruits and plants enrich the garhad no such splendid villas as those of Hunneywell, Payson, Gray and others, with their broad lawns, extensive glass structures and magnificent plants, which are such an honor to our land. Then we had many old and fine homes and gardens, such as Governor Gore's, Mr. Lyman's, Mr. Preblc's, Mr. Cushings's, the Perkinses and others; but very listle in the way of landscape gardening or in new or rare plants or fruits. Then our exhibitions were confined to a few days of the year, and were for many ycars held in small
rooms; now many of our exhibitions are the best given in any State in the Union. Then we had no building of our own; now we possess the most costly and magnificent temple of horticulture that the world can boast. Then the American Pomological Society, whose president, by the mercy of God, in his 28 th ycar of service now stands before you, had never been dreamed of-a society that emanated primarily from the influence of the Massachusetts IIorticultural Society-a society that embraces not only our national domain, but whose jurisdiction extends over our con-tinent-whose catalogue prescribes the appropriate fruit for fifty States, Territories, and districts, and at whose quartercentennial in this city, the far off State of Nebraska, with her governor at her head, carried off triumphantly the
Wilder medal for the best collection of fruits. Then there Wilder medal for the best collection of fruits. Then there were few exports of fruits; now we send 400,000 barrels of
apples in good years to foreign lands. Then the grape was scarcely cultivated; now, in addition to all that are used for the table, we make $15,000,000$ gallons of wine, and wine, too, that took the first prize at the World's Exhibition at Vienna, in 1873. Then the statistics of our fruit crop were not thought worthy of record; now it amounts to $\$ 140,000,000$, or nearly the average annual value of our wheat crop. But I must bring these remarks to a close. I thank you for the ;
kind references to me as a pioneer in rural affairs. You do kind references to me as a pioneer in rural affairs. You do
me no more than justice, for I cannot, as I have told you before, remember the time when I was not fond of the cultivation of the soil. But, gentlemen, my labors are mostly over. Soon I shall be resting in the bosom of my mother earth; but if I can believe I have done anything to advance the great interests of our land, and which shall contribute to the bappiness of my fellow men, I shall, so far as this
world is concerned, die content, fecling that I have not lived in vain."

Mr. Wilder resumed bis seat amid a storm of applause.

Notes from the South.-Facts about the Cotton
Worm.

by profrssor c. v. rleet.

The readers of the Scientific American may not be uninterested in a few notes of a trip recently made through the land of sub-tropical products-the land of cotton, of the long leaved pine, the Tillandsia or hanging moss, the beautiful crape myrtle (Lagerstramia indica), the magnolia, the cypress, and the China berry (Melia azedaruch)-the land where the cow pea comes to perfection, and where side by side with such products of the farther north as corn, whea and oats, may be seen growing the sugar cane and rice.
My mission south is the direction of the investigation now being carried on by the Commissioner of Agriculture into the insects injuriously affecting the cotton plant, and the best means of counteracting their ravages. The Commission of Inquiry was organized by the appointment of Prof. A. R. Grote, of Buffalo, N. Y., and Prof. J. II. Comstock, of Cornell University, as special assistants, and of Prof. J. E. Willet, of Macon, Ga., Prof. E. A. Smith. of Tuscaloosa, Ala., Dr. E. H. Anderson, of Kirkwood, Miss., and Wm. J. Jones, of Virginia Point, Texas, as local agents and ob-

Two circumstances have somewhat interfered with the inquiry, namely, the yellow fever and the general freedom of the plant from the cotton worm, the serious injuries of this last being restricted to the "cane break" regions of Alabama and to the southwest countics of Georgia, especially the country between the forks of the Flint and Chat-
tahoochie rivers-the more malarious portions of either
among cotton planters (or rather among their superinten. dents, for the planters are mostly away from home at this season) on the most noticeable and important habits of the cotton worm is the more remarkable, considering the losses sustained by them from this insect in the past. I find that the opinions of the most observant are seldom founded on intelligent observation, and that such opinions are, consequently, of little value. This state of things is due to three evident causes: First, the general unhealthiness of the regions in which the insect does most damage, and the intense beat that prevails during the months when most of the observations must be made; second, the fact that the culture of the crop is turned over to uneducated and unobserving negroes; third, the failure to discriminate between the cotton worm (Aletia argillacea) and the boll worm (Heliothis armigera) in their later stages, and the natural difficulty that besets the solution of some of the questions, such as the winter babits of the Aletia.
It bad often been a wonder to me that no true parasites had ever been found infesting this insect, since there scarcely exists a plant-feeding specics that is not attacked by some parasite. Several such have been discovered on Aletia this summer. Again, I wondered what plants the moth naturally fed from, since it was known to be fond of sweets and had, to my knowledge, done consid erable injury in Kansas by boring into peaches.
The cotton plant is peculiar for having a gland on from one to three of the larger ribs of the more mature leaves, and a still larger gland at the base of each of the three lobes of the involucre. As soon as I learned that these glands secreted a sweetened liquid I inferred that the plant would be found to furnish nourishment to the moth as well as to the larva, and drew attention to this belief in the Atlanta Constitution. It was with no small degree of pleasure that at Baconton subsequently, in company with Professors Comstock and Willet, I was able to prove my anticipation correct by studying the normal habits of the moth with a dark lantern at night. The moth is, therefore, attracted to the plant by the sweets which this last affords, and as these weets are first produced when the plant begins to flower and fruit, we have here a possible explanation of the wellknown fact that the worm is never noticed on the young plants, but first appears about the time of fruiting. We have also discovered that the moth feeds on the boney copiously secreted from glands occurring at the apex of the peduncle, just above the pods, of the cow pea (Dolichos), extensively grown through the South as a forage plant; also on the sweet exudation from the rachis of the flowers of Paspalum love, a tolerably common grass.
It is by taking advantage of this love for sweets which the moth possesses, that we shall probably arrive at one of the most effectual ways of preventing the ravages of the worm; for if we can allure the first moths of the season to certain death we nip the evil in the bud; and I am now having experiments made to test the effects of different poisons mixed with sweets to use as bait. These baits may be applied to the trunks of the dead pine trees that occur in so many cotton plantations, or to the trunks of any other trees; or they may be used in pans, upon which perforated platforms of wood or tin are made to float.
I have also discovered that the worm affecting the cotton
 ro Texas, is often another specics (apparently Anomis exacta, Gn.), though belonging to the same genus as that which is already so well known. We shall most likely find, as a consequence, corresponding difference of habit.
The use of Paris green, cither in water or powder, which I first recommended for the insect in 1873, is now the gen eral and, in reality, the only satisfactory mode of killing the worms, though some other preparations of arsenic are to a limited extent employed. We may yet discover something as effectual and less dangerous; but in any event there is a great deal to be learned in the more cconomical, safer, and more effectual use of the green poison. It is now either sprinkled in water through coarse sprinklers that waste the bulk of the liquid on the ground, or dusted from equally coarse and crude sieves. The carelessness with which it is generally used has, also, prejudiced the negroes against it; for the powder settles on their persons and is carried by perspiration to the nether parts, causing swelling of the groins and other troubles. The cost averages $\$ 1$ per acre for a single application, and this great cost naturally deters many from attempting to save the crop. Lastly, few planters begin to poison until the worms are nearly full grown and have fairly begun to strip the plant, by which time it is often too late to go over a large plantation successfully. I have no doubt whatever that all this can be materially

For some days after the worms hatch they feed on the underside of the leaf, confining themselves to the parenchyma without eating through. There they may be in large numbers without attracting attention, and there, before they have an opportunity to riddle and devour the foliage, they should be killed, and might be with the minimum expenditure of poison, if this were applied from beneath instead of from above. We shall endeavor to perfect a machine for this purpose. By means of a force pump, to which an atomizer is attached, the liquid may also be sprayed on to several rows of the plants at once, thus greatly reducing the cost of labor and material, as has been proved in parts of

In traveling through the South one finds very many signs of coming prosperity, and they are more particularly noticeable in Georgia. I have met with few persons who are not satisfied that emancipation-whatever it may prove for the negro-was the very best thing that could have happened to the white population of the South. In slavery times, in proportion as a man's slaves increased, he had to increase the extent of his plantation; for Sambo was valued only according to his cotton-producing capacity. The natural tendency was an increasing negro population, and a decreasing white population with widening estates, to say nothing of the enervating and demoralizing effects of the institution. To-day the and demoralizing effects of the institution. To-day the
tendency is all the other way. The authorities recognize the value of intelligent white labor, and are making successful efforts to induce immigration. King Cotton has had his day, and while he will ever raise a proud head in this latitude, diversified farming is the motto of the more intelligent and far-seeing. I had the pleasure of riding up from Albany with Senator Gordon, who is deservedly popular. He had just come from his large sheep farm, and interests himself largely in the improvement of stock in the State and in the general advancement of agriculture within her borders; and he is but one of many prominent men equally alive to its advancement.
The great strides made in fruit culture since the war can hardly be appreciated by one who has not been here. The best evidence of its rapid growth, and of the spread of esthetic taste, may perhaps be found in the constantly increasing sales of the nurserymen, and especially of Mr. P. J. Berckman's, of Augusta, who is prominently identified with Georgia's advance in horticulture. The entrance to Mr. Berckman's "Fruitland Nurserics" is by a broad avenue of magnificent magnolias; and after spending a few hours among his greenhouses and his well kept stock of choice fruit and ornamental trees, many of them new to Northern eyes, the secret of his patronage is easy to discern. Exotic conifers are here made a specialty, and I have never witnessed anything more beautiful, outside the grounds of Mes.rs. Ellwanger \& Barry, of Rochester, than his beautiful Cupressuns Kni:htitume repyens and the fine Cunninghamias that lift their heads forty or fifty feet high.

Washington, D. C., October 14, 1878.

SOME MODIFICATIONS OF THE MICROPHONE AND TELEPHONE.
 br geo. x Hophing

The microphone now exists in many frims, and is an exceedingly interesting instrument, although it has not, thus

MICROPHONE WITH GRAPHITE RODS.
far, attained the usefulness of the telephone. The several forms of microphone are casily constructed, but all, so far as I know, are defective in some particular. An instrument of this sort that is sensitive enough to transmit the slightest sounds is too sensitive to transmit the heavier sounds properly. In the instruments shown in Figs. 1, 2, and 3, these defects are in a great measure remedied. These microphones are so simple and so easily made that I give a description of each, so that any one who wishes to experiment in this direction may be able to do so.
The instrument shown in Fig. 1 has a wooden diaphragm one eighth inch thick and four inches square, which is glued to a narrow frame supported by suitable legs. Two pieces of battery carbon, $\Lambda \mathrm{B}$, are secured by means of sealing wax to the diaphragm about an inch apart and at equal distances from the center. They are both inclined downward at about the angle indicated in the engraving, say 30°. The carbon, A, is longer than the carbon, B, and has in its under surface three conical holes-made with a penknife point-which are large enough to receive the upper ends of the graphite pencils, C. The lower ends of the pencils rest in slight cavities in the lower carbon. The pencils, C, are simply pencilleads sharpened at each end and placed loosely between the carbons; they are inclined at different angles, so that the motion
of the diaphragm which would jar one of them would simply move the others so as to transmit the sound properly. Battery wires, which are connected with a telephone*, are a tached, one to the carbon, A, the other to the carbon, B.
The diaphragm and its support in Figs. 2 and 3 is the same as that already described. The microphone shown in Fig. 2 has a piece of battery carbon, D. secured in aninciined
position to the diaphragm near the middle, by meats: of

MICROPHONE WITH PENDANTS

sealing wax. Three carbon pendants, E , of different sizes are suspended by very fine wires, so that they rest upon the upper surface of the carbon, D. The three fine wires are all connected with one of the battery wires, and are fastence at suitable distances apart to the face of the diaphragm by a drop of sealing wilx. A fine copper wire is wound around the carbon, D, and connected with the battery.
The construction of the microphone shown in Fig. 3 is so obvious as to require little description. One of the battery wires terminates in a series of coils, F, and is attached to the diaphragm above the middle. The other wire is con nected with a strip of metal, G, which is secured to the diaphragm below the middle, and is curved and indented to re ceive the wires, H, which, by the way, must be quite fine say No. 30.
These instruments are used as transmitters; a Bell telephone is used as a receiver. By using a number of rods, pencils, or pendants instead of a single pencil, as in the Hughes microphone, much if not all of the jarring is avoided, while it is capable of performing the feats usually expected from instruments of the name, such as the transmission of the sound of the ticking of a watch, the tramp of a fly or an ant, the crumpling of paper, whistling, instrumental and vocal music, and, under the proper conditions, articulate speech, whispering, etc.
The instrument shown in perspective in Fig. 4 and in section in Fig. 5 fulfills the requirements of both microphone and transmitting telephone, being capable of transmitting articulate speech as loudly and clearly as any of the well known forms of telephone. It is not necessary that one

Pia. 3.

MICROPHONE WITHOUT CARBON.
should speak directly into the instrument; it may be in one part of the room and the speaker in another. It will transmit a whisper, or the conversation of two or three persons. fement. No. 14.
and it is partial to violin and flute music or whistling. It seems almost incredible that an instrument of this construction should do these things, as everything is accomplished through the medium of a long lever actuated by the diaphragm; but this constriction amplifies the vibrations of the diaphragm, and renders the instrument effective. The mouthpiece, which containsa ferrotype diaphragm, is mounted on a standard, and the diaphragm is damped as in the phonograph by means of short pieces of rubber tubing placed between it and the mouthpiece. A wooden spring is attached to the diaphragm support, and extends across the attached to the diaphragm support, and extends across the
diaphragm downward toward the base of the standard. A small set screw passes through the spring and bears upon a thin metal plate that rests upon a soft rubber block, placed against the center of the diaphragm. The spring between the set screw and the fixed portion is reduced somewhat in thickness, acd from the set screw to the lower end it is tapered to make it as light as possible. A small peneil of battery carbon is cemented to the extreme lower end of the spring, and a very fine copper wire is wound around it and spring, and a very fine copper wire is wound around it and
carried upward to the fixed portion of the spring, thence downward to the binding post at the left. A small metallic spring is secured to the standard near the base, and carries at its free end a block of battery carbou, which is brought into light contact with the carbon on the end of the wooden spring by turning the adjusting screw that passes through the metal spring and bears against the standard. The metal spring is connected with the binding post at the right. This instrument, placed in an electrical circuit in which there is ${ }^{\prime}$ a Bell telephone, will transmit speech with considerable loudness. It requires no call or alarm, as a loud sound made directly into the mouthpiece will produce a noise in the receiving instrument which may be heard in any part of a room of ordinary size.

The French Dam below Pittsburg, Ohio.

Three years ago Congress appropriated $\$ 100,000$ for the construction of a Chamoin dam at Pittsburg, under the direction of the War Department. The construction was begun during the past summer. It is intended to form slack water to the two rivers which unite at Pittsburg and form the Ohio River to create a harlor six miles long for the commerce of the city
The peculiarity of the French ciam is that it is the dam of

low tides. That is, it is a dam which is set up against the stream when the stream is low, diverting the water into a lock, after the manner of a canal, and falling in ordinary times prone on the bottom of the river, allowing navigation to pass over it in its usual course. The dam is raised or lowered by means of a series of props which are handled by a simple process. The gate of the canal is opened aud closed by hydraulic power operated from a gigantic tank at an elevation on the river bank. In detail, the French dam, which has received the name of Chamoin, after its inventor, is simply an extended series of wooden wickets from four to six feet in width, and from ten to fifteen in length, placed side by side on end on a stone platform, at an angle of cighty degrees (from the horizontal) across a river bed. Each wicket as it faces the stream has behind it a cast iron prop, whose lower end is adjusted when the dam is up in a hurter or catch, at the head of a slide on the platform of the structure, along which it can be lowered at pleasure, the wicket falling with its prop; the whole dam being let down by degrees according to the necessity made by the rising water. Such is the character of the dam which is every where employed for the improvement of the low tide rivers of France; which converts the Sanne, the Meuse. the Marne, the Yonne. and the Oise into navigable slack water, and the Seine from ths head waters to Rouen into a canal.

