Grintifir Amerian.

HENAISLISHED 1815.
MUNN \& CO., Edionrs and Proprietors.

published weecly at

NO. 3' PARK ROW, NEW YORK.
o. D. mLiv.
A. e. beach.

TERDS FOR RHE SCIENTIFIC AMERICAN.

 One cory one year, postage included...-ne cony, six months, postage included Clubs.-One extra copy of TIEE Scienticio...................... 1660 same proportionate rate. Postage prepaid.
FSingie copies of any desired number of the SUPPLement sent to on address on receint of 10 cents.

The Scientific Amcrican Supplement
is a distinct paper from the Scievtific A merican. The suupplemend is issued weekly every number contains 16 vectavo pages, with handsom. or Supplenent, s5.00 a year, pustage naid, to subscribers. Single copie 0 cents. Sold by allnews dealers throughout the country
Combined Rates. - The Scievtific anericay and scpilimiat will be sent for one year. postage free, on recetpt of
The safest way to remit is by draft, postal order, or registered letter Address MUNN \& CO.. 3 Park Row, N.

Sclentific American Export Edition.
The Scimxtific Amprican Export Edition is a large and splendid pert odical, issued once a month. Each number contains about one hundred
large quarto pages, profusely illustrated. embracing: large quarto pages, profusely illustrated, embracing: (1.. Most of the
plates and pages of the four preceding weekly issues of the scievtific
 Commercial, tiade, and manufacturing announcements of leading houses.
Terms for Export Edition, 5.00 a year, sent prepaid to any part of the Terms for Export Edition, $\$ 5.00$ a year. sent prepaid to any part of the
world. Single copies 50 cents. Manufacturers and others who desire world. Single copies 50 cents. Manufacturers and others who desire
to secure foreign trade may nave large, and handsomely displayed announcements published in this edition at a very moderate cost. The SciEvTrific Ancirican Export Edition has a larke guaranteed circu-
ation in a commericial places throughout the world. Address MUNN ation in a commercial places
CO... 37 Park Row, New York.

VOL. XXXIX., No. 19. [New Series.] Thirty-third Year.
NEW YORE, SATURDAY, NOVEMBER 9, 1878.

TABLE OF CONTENTS OF
 THE SCIENTIFIC AMERICAN STPPLEMENT NO. 149

Forthe Week ending November 9, 1878

Depth of Nevada Gold and Sliver Mines.
The Sierra Nevada mine is at a depth of 2,200 feet; Ophir, 108 feet on stope below 2,100 feet; Consolidated Virginia and California are 2,050 each; Gould \& Curry, 1,900; Savage 2,300; Hale \& Norcross, 2,300; Chollar Potosi, 1,850; Imperial, 2,400; Consolidated, 2,400; Bullion, 2,200; Yellow Jacket, 2,400; Crown Point, 2,360; Belcher, 2,360; Julia 2,100; Nortb Consolidated, 1,425. Levels in North Con solidated are 1,100 and 1,425 feet from the surface.

THE EAST RIVER BRMDGE. [Continued from first page.]

At the outset the estimated cost of the bridge, exclusive of the land, was $\$ 7,000,000$. When at the death of his father, Colonel Roebling, the present engineer in chief, Mr W. A. Roebling, took charge of the work in 1872, he raised the estimate of cost to from $\$ 8,000,000$ to $\$ 9,500,000$. In 1875 the directors asked and obtained an appropriation raising the expected outlay to $\$ 13,500,000$. Even this vast sum is now found to be insufficient; and the probability is that the amount needed will not be less than the estimate made liy the Scientific American, some five years ago, namely, $\$ 20,000,000$, a sum nearly double what would be neededas was shown in this paper February 3, 1877-to provide at least fourteen tunnels crossing under the East River at as many principal strects.
Already the limit fixed by the Legislature has been ased, and yct the work is far from completion As a atural consequence the undertaking has aroused the strenuous opposition of influential partie3, who insist that no more of the city's money should be expended on account of the bridge untal the courts decide that it must be paid. Prominent in this connection is the New York Council of Reform, whose president, Mr. William II. Webb, the eminent ship builder, has lately given an elaborate statement of the grounds on which their opposition to the bridge has been based. A summary of his argument will be given below. IIow far the clarges against the bridge-on the score of its iajury to commerce, its incapacity to meet the needs of the two great cities which it is to uaite, and its inability to withstand the force of storms such as that which has just made such bavoc along our coast and in neighboring cities -how far these charges are true, how far exaggerations of fact, we shall not now attempt to discuss. We give them as an essential element in the history of the great liridge.
Under the head of injury to commerce, Mr. Webb asserts that two thirds of the 19,534 sea-going vessels that came into this harbor in 1876 had to pass the towers of this bridge, some of them several times, in the process of loading, unloading, and repairing; and that the masts of a large majority of these vessels were found to be too high to pass under the flooring of the bridge under all conditions of weather and the crowded occupation of the river.
The cost ant delay of taking down and replacing the top masts, and the frcquency of the collisions of ship masts with the cables of the bridge, are said to be so great that it has already become the practice to insert in the charters of vessels coming to this port the conditions that they shall not pass this bridge, or, if compelled to do so, shall receive extra allowance. Since the commerce of this city is its life, and has a State and national importance, no such injury to it can be tolerated.
In view of the circumstance that the United States Government, in the interests of the whole country, is spending many millions in removing the natural obstructions to commerce at Hell Gate (the castern entrance to New York Council insist that it is nonel the bridge is to open), the Council insist that it is not to be supposed that it will neu-
tralize these improvements by imposimg a still greater obstruction in the same river by this bridge, especially when such obstructions are expressly prohibited by the laws of this State; and that with so strong a presumption that the bridge will be judiciously condemned, it is a criminal waste to spend any more of the public money upon it, at least until a final decision of this question has been rendered.
Under the head of excessive cost it is urged that, since the act of the Legislature authorized only the construction of such " a bridge as should render the travel of the people of this district certain and safe at all times, and whose cost should not exceed $\$ 8,000,000$ when completed and open to the public, with all its debts and liabilities paid;" and since the Engineer's estimates show that the bridge cannot be completed for less than double the sum allowed, any further work upon the bridge is unauthorized and illegal, and the further issue of city bonds on account of the bridge should be stayed until some competent judicial authority shall decide that they must be issued.
Touching the incapacity of the bridge to facilitate either passenger or business traffic across the East River, Mr. Webb claims that the bridge will sustain per hour the weight of only 250 passengers in cars and 10,000 moving on foot at the usual rate; while at the busy periods of the day, morning and evening. Fulton Ferry alone carries 20,000 an hour. Seeing that 190,000 passengers are daily carried both ways by all the ferries between New York and Bronklyn, it is claimed that the bridge will not begin to meet the demands that may be made upon it, in case the ferries are suspended hy ice or otherwise.
Still more serious is the charge that the bridge will not be secure. Mr. Webb says: "This is wholly an experimental bridge. It is the highest and longest in the world, and probably the only one entirely unsupported by any form of stays. The history of suspension bridges in this country and in Europe shows their most dangerous exposure to be that to storms, producing oscillations and ruptures. Five of the largest suspension bridges in this country, and several in Europe, have been destroyed within a few years after their erection in this manner, although all of them were substantially stayed. The Engineer-in-Chief of this bridge, in his report of March last, asserts: 'During the severe northeast gale of January 31 last it would have been extremely dangerous to have sent trains across on narrow gauge.' This storm, which was not at all exceptional for its violence, Mr. Roebling estimates at 21 pounds per square foot pressure,
which is 1 -6th greater than the sustaining power of the bridge, and expresses the opinion in this report that a train of cars on either a 4 -foot 8 -inch track, or 6 -foot track, would be upset by a wind pressure 17 per cent less than this, and asks: 'Who can guarantee that the wind will never blow with stronger force? He instances a recorded case of the velocity of the wind during the last year at 186 miles an hour, or about 170 pounds pressure per square foot. If, then, railroad cars, with their low iron wheels and heavy structure, are liable to be overturned by frequent storms, what must be the liability of top-carriages and business vehicles, with their high wheels, lighter structure, and narrower gauge? What is the liability of foot passengers? What of the bridge itself, with its 130.000 square feet of flooring, and the 17 per cent storm resistance of its trusses? If an eddy of air were to strike the bridge from beneath with greater force than its own weight it would be lifted, to crash back again with its destructive momentum of thousands of tons."

Another source of peril lies in the circumstance that while the bridge will provide space for 5,000 passengers in the car-division and twice as many more on foot, it will bear the weight of only 2,400 at one time, and these equally distributed.
'How are these conditions to be secured in a public bridere 'at all times' when there are at least six hours each day during which, if the ferries are stopped, there will be a pressure for freight and passengers at least ten times greater than the bridge can sustain?'
Again, Mr. Webb urges, the weight and working of the endless rope for propelling the cars is likely to prove a fatal strain upon the bridge. "The iron cable, more than two and one-fouri h miles in length, must be of sufficient strength to overcome the friction of the wheels upon which it rests, to carry its own weight, and the car attached to it, at a speed of 15 miles an hour up and down a grade of 100 feet, revolving around drums 6,000 feet apart, and frequently stopping and starting. As this cable is held by drums at each termi nus of the bridge, 100 feet lower than it is at the center, when the horizontal power is applied to revolve the cable, it must bear down the center with a crushing perpendicular force." The feasibility of the method of moving the cars is doubted, Mr. Webb says, by all the best engineers the Council have consulted, while the Engineer-in-Chief of the bridge has condemned the only other method, the use of locomoives, for the reason that the structure has neither been designed nor built to bear such heavy concentrated loads. In view of these strongly put if not inherently strong objections, Mr. Webb insists that it would be foolish, if not wicked, to spend more money on " a bridge that is not called for, cannot be nade to answer the purposes for which it was professedly built, very seriously damages a large part of the commerce of this harber, taxes the financial ability of these two cities to their utmost, and cannot fail either to be taken down by the mandate of the courts or demolished by the winds."

PROFESSOR MORTON ON THE ELECTRIC LIGHT.

In a lecture before a meeting of the American Gas Light Association, at Stevens Institute, Hoboken, October 17, Professor Morton reviewed the progress made in producing light by electricity, and discussed at some length the question of competition between electricity and gas. In tracing the history of the electric light he said that it is, as applied to practical purposes, essentially a phenomenon of magnetoelectricity, or the mechanical production of electricity, be cause electricity produced by the battery is only used as a matter of scientific interest. In this sense the possibilities of the usefulness of the electric light originated with Faraday's discovery of magneto-eiectricity in 1831, as everybody knows. This was followed within a year or two by the invention and construction of magneto-electric machines by Saxton, Clark, and others, and these were developed in size and power by Holmes, and by the various inventors whose work is embodied in the machine known as that of the Alliance Company, in Paris, a machine capable of producing a very brilliant electric light, but very bulky and very expensive, requiring immense power to drive it. Its use was consequently limited to the Falmouth lighthouse, in England, and to some French lighthouses and works of con struction like the Cherbourg docks.
The first decided improvement upon this machine was made by Siemens, who devised a peculiar form of armaature. The next step forward was made by Mr. Wild, of England, who made the remarkable discovery that if a current from a small magneto-electrical machine was made to pass around the coils of a large magnet, the attractive power of that magnet would be immensely greater than the force of the magnets in a small machine. Thus by working a small machine, passing the currents through elec-tro-magnets of a large one, and then taking from the armature of the large machine the current to be used, he obtained great electric power in a small compass. Almost at the same time Wheatstone and Siemens made similar improvements, and a machine, between them and Ladd, of London, received another development by having this curious combination introduced. A single set of electro-magnets were employed, with an armature between the poles wound with two coils, one coil being so connected as to pass the current through the electro-magnet itself, and the other supplying a current for exterior use. In this way the machine, as it were, excited itself, and then yielded a powerful current for exterior work.

It all the machines used, up to this time, the armature had lamp and the Brush lamp do not differ in principle with the its mingetism reversed as it rotated, and this involved a cruat loss and waste of power. The French cabinet maker, aramme, comecived the ider of using it ring and rotating this ring between the poles of a magnct in such a way that there should be no reversal of poles, but merely the traveling of the poles around in the ring. This ring was surrounded with poles from which the induced current was taken. The tdea here involved was so unjromising that several electricians wrote very decidedly concerning it, opposing and ridiculing it. Nevertheless it produced in practice a machine which possessed a semarbaine merit in yielding a large quantity of electricity with a very small expenditure of power In this conntry, Mr. Palmer, of Boston, Mr. Wallace, of Ansomia, Mr. Brush, of Cincinnati, Mr. Weston, of New.
ark, and Mr. Hockhancen, of New York, have all develoned ark, ator Mr. Hockhatisen, of New York, have all devoloped
machines which involve some of the general principles con tained in the earlier productions, and all of which are cseellent in their way. By one or other of these machines we are now crabled to produce light by an expenditure of power so snall as to render its production cheap; probably not far from a fais average is that of 1,000 candles per horse power. Consequently this light has opened to it a wide field of ustefunness and practical application which did not exist when it was more expensive.
Touching the practical uses of the electric liyht, Profussor Morton said that the illuminating of large workshops, of pullic buiddings, places of amusement, gardens, wnd the tike, is undoubedy an accomphishet fact, and this use of
thu electric light, we feel contident, will hargely extend. But it las been suggester that more than this will soon be reached, and that the electric light will take the place of other sources of :llumination, gas, for example, in private houses. It would be very foolish for any one to atternpt topredict what miy or may not be accompl:sbed in the future, tut in a case as this we may at least look back at the past and sec
whit has been the history of the same thing, and judge someWhat has been the history of the same thing, and jud
thing of future probabilities from past experiences.
Thereaporn the sipaker described at length the unfulfilled promises of Mr. Jobart's method of dividing the electric light, which twenty years ago was thought to have solved the great problem of electric liyhting. He would by no menns have it inferred that better success could never be attained. On the contrary, there are several very promis. ints direntions for experinent, on one of which no doubt, Mr. Edison is at present enbbirked; but he difference be tween a promising line of experiment and a successful result all the world's history teaches us is often a distance of many yeare, to say the least.
The method of producing light by heating a platinum wire by the clectric current was then exhibited and explainen, and its difficulties enlarged upom. Also the production of light in Ceissler tubes, and by the extra current as employet by Professors Houston and Thomson, of Philadelphia, it Which direction be thought something inight be attained. Of the speedy sulstitution of the clectric light for the gas
light, Professor Morton was very skeptical; mo such radical light, Professor Morton was very skeptical; no such radic
change as many expect need be expected this certury.
An interesting feature of this lecture was the exhibition of an improved gas burner giving a light of 2 on candee with the ronsumption of forty cubic feet of gas an hour.

the electrical defartment in the mechanics

 FAYR, BOSTON, MASSAt the Menhanies' Fair held four yeass argo in Boston there were nine entries classed under the lead of electrical inventions; to-day there are cighteen. This incrense marks the great advance we are making in the application of electricity to the usefularts.
Even in the approach to the exhibition buidding, which is opposite the Bostor and Providencedepot, corner of Columbus avenue and Pleasant strect, one face is illuminated at night by an electric light, which simulates the white gleam of moonlight, throwitig dark shadows and emabling one to see to pick up a pin on the sidewalk with perfect ease.
The illumination of the main buidding by electricity is the most important feature of the cxhibition. One side of the large hall is lighted by five lamps which are run by the Wallace Farner machine, and the opposite side is lit ly four lamps run by the: Brush machine. The Wallace Farmer lights are provided with platecarbons two inches by five or six in area. The voltaic arc plays across the smaller side. From three to five limps are run upon one circuit by the Wallace Farmer machine. If one light should happen to go out, the otlerers in the circuit are nollextinguisled, for the plate carbons close together and the light is relit. These lights necessarily ficeker to a certain extent; they are, however, steadier than would be imagined When the great play of the voltaic ares in each hamp is considered. It has been demonstrated at the fair that five lights at least carn be furninhed on one circuit by the Wallace Farmer method. This in itiolf is a decided achicrement.
The Brush lamp makes use of what may be called the pencil carbon points in contridistinction to the Wallace Farmer carbon plates. Fach of the Brabh michi ies furnishes four lights, which are fed by four different currents running on two conductors to each lamp. The Brush lights appear to be nteadicr than the Wallare Farmer lights, but not so powerful. The guestion of the amount of power used by both machines and the resistances of the circuits of both machines enter, however, in the question of the amount of nurrent generated which produces the lights. The Brush lamp
amp and the Brosh limp do not differ in principle with the by the other. The carbons of the Brash light are electroplated with copper, whicb, it is claimed, prevents the beating of the carbon below the point of burning and regulates the cousumption at the points.
We have said that both lamps du not differ in principle. In the Brash lamp the upper carbon is lifted ly the movable core of at straight electro-matget; in the Wallace Farmer by the armature of a loorseshoe magnet; and pratically the same mochanital device is used in both lamps to jrevent the upper carbon from falling when the circuit is made. ln the Art Gallery the two rival lamps confront each other, and one can judige better there of the relative brilliancy of the two. The dhtails of the pictures are clearly seen in the brilliant lights, which are softencd by heavy ground glass or opal shades. Greal interest is mathested in these lights, which seem to be the prominent ouse bofore the Amerienn publie.

No less than twenty different clectrical lampe were exhibited this summer at the Paris Exhibition; and three hundred lamps were It during the nights of the past summer in the French caplital. The Jablocllkoff candle has not made its way to this side of the water, and Ameriearn makers of dynamoelectric machines are attacking the problem of clectric lightinf by means totally diferent from those used in France. While we use the continuous current machines the Froneh makers are altering their machines into alternate current machines, so as to ohviate the unequal wearing away of the positive and negative carbons. The Jablochkoff candle dispenses with in regulator and thus enables more than one light to be produced by the same alternating current. The Arner ican regulators exhibited at the Mechanics Fair would not work with an alteraating machine.
The subject of electric illamination is evidently in its in fancy; four years ago, however, the Mechanics' Fair could not have been so salisfactority lighted as it is every night at the present time by the Brush machines and the Willaces
Farmer machines. The next important invention, and by some considered the most important, is the telephone. Both the Bell telephone and the teleplones of the Western Ünion and Gold and Stock Compary are placed on exinhition. The forms of the Bell telephone are weil knowri ; both the hand and the box instrament ate at the fair, arnd are ponnected with the yarious telephone dispatch companies in and out of Boston, for the fire won ath and rions trials that a mensage cun be hewrd hetter from Cambridge than from a neighboring room in the exhitrition building there is a certain condition of out qide resistance beyond the mere resistance of the circuit which seems to give the best, effect. In the Gold and Stork Compary exhibit can be seen and leard the various forms of Phclps' eelephones and als; Edison's carbon transmitter. The latter, in combination wi:h Bell or Phelps telephone, gives the best effect of any teleNhones or telephonic combinations. It is clamed that the New EDgland Telephone Company (Bell's patent) have suc ceeded in improving their methods of eommuntication in citio. and towns. The same compary alwo exhibit a new and very sensitive call. It is marvelous how quickly a new industry 'has sirung up with the introduction of the telephone' New forms of flexible telephone cords, provided with linding ends, which obviate the expersive terminals now in use, are exhibited by Mr. Hale, and are practical improvernents. Iedding \& Co. also exhibit pmanmel covered wise for tole phones and electro-magnets in general. Copiet wire is is said to stand heat and moisture remarkably well. More turns of this wire can thas be wound upon agivan boblan or magnet than of silk or cotion covered wire.
Fdism's electric pen, which is well known to readers of this jourtial, las a liberal space devoted to it in the exhitui tion. Many specimens of its work are given, including some fine writing by Edison himself.
An apparatus for lighting street lamps and gas jets in fire engine houses is shown by Mr. Stevens; il secms to bea very pructical deviee, and superior to that which has lately attracted much attention in London. Mr. Stesens makes use of the direct current to turn on the gas, and of the spark produced by the extra current to light it. Many furms of hotel electric amonciators and hurglar alarms are exhibited. The exhibition building is protected from fire by the automatic electric fire signal company. The principle of their device tonsists in the use of a small coil which expands by heat and completes an electric circuit, which therenpon gives an alarm. If electricity conla be user to beat the of preservation and destruction of the fair.

THE FRENCH INDUSTRIAL EXHIBITION OF 1878.
While the Philadelphia Exhibition was still in progress
he summer of 18%, the French Legislature passed an act providing for the holding of an International Exbibition in Puris in 1878, to contiaue from May to Oetober.
The preparation of the requisite buildings in the Champ de Mars and on the Trocadero was taken in hand energetically; and notwithstanding the ominous war cloud that semed to be settling over all Europe, the work of making ready for the Exhibition was pushed forward with commendable dispatch.
A chararteristic feature of the seheme was the appropri-
to consist of 650 members- 350 French and 300 foreigners whom were to be French.
It was ront until the close of last gemr that the participafion of the Cnited States was insured by the passage of a bill appropriating $\$$ tid, 000 for that purpose. At that late date nearly all the space had been alhoted, there remaining for the Lrited States only 400 x :00 feet. Fully five times his amount was immedtately anked for by our would-be ex inibitors, but the fast majority bad to he refued.
The Exhibition was formally opened May 1, 1876, though, with the exeception of Enerland, fow of the exbibits were well advanced toward readimess. Relatively the American space was about one sixth that of Great Britain, ome half tlatt taken by Beigium, 1 wo thirds that of Austris, a little rus than half that of China and Japan, is little more than hat of the Netherlande, and about the stume as was severally occupied by Russia, Italy, and Switaerland. Germany did not compete
In view of these facts, the correspondent of the Tribune complainingly remarked that he was almost. tempted to say hat we had better not have come at all than to have come with such a meager display, especially as we mirht Intive had as much space as Great Britain if we had asked for it in time.
Thanks, however, to our most efficient and honorable Commissioner in Chicf, an admirable selection of exhibits was made; and, at the result showe, the Cnited states par tianly, at lemst, made up in quality whit we lacked in quanity. In one other respect the Paris Fxhilition has been pecenliarly gratifying to all Americans: not a question has been rused as to the capacity, energy, and integrity of our official representatife.
No official report las reached us with regard to the aggre. gate attendance upon the Exhibition; we beleve, however upon the Centennial Exhibition of 1876 .

AWARDS AND HONORS AT PARIS

The last great official act in connection with the Exhibition of $18 \pi 8$ was the distribution of prizes and honors, which took place Oct. 21, in the Palais de l'Industrie. in the presence of an immense and brilliant audience.
The complete list of the prizes awarded to American ex hibilors apperars in the Solentero Stpplement of this week; it is happily far too long for insertion here.
The following nimed Americans received deeorations of the Legion of IIonor:
Comminsioner-General Riehard C. MeCommick, who is mante Commander; Professor F. A. P. Barnard and William W. Story, who were made Officers. Auguste H. Girard, sedratary to the Commissioner General ; Henry Pettit, Enginee ambl Achitect of the Commissioner-General's staff; Thomas R. Pickering, Surperintendent of the Machinery Scetion; lisutemant Benjamin H. Buckingham, L.S.N., Naval At tache; John D. Pbilbrick, Superintendent of the Educational section; D. Maitland A rmastrones, Superintencerat of the Fime Arts Section; Professor Andrew D. White, LLL.D., juror; Profassor Williarn P. Blake, juror, and Professor Kdwarif H. Knight, IL.D., juror, were made Chevaliers. Cyrus I. MeCommitek and Waiter A. Wood, who were in 1867 made Chevaliers, have been raised to Officers.
Scueral exhibitore wore mate Chevalices namely:
Charleg Tiffany, silvurware; Thamas A. Edison, phonoGrapla; Elisha Gray, telephone; James Bresster, carriages, and F. 1 . Bridgrman, the artise
It is worthy of note that the men thus selected by the French Government for special distinction are all honored at home as latrd working, capable, and useful morn-heads of colleges, mechanios, artinans, manufacturers, inventors, artists, seientists, and cisil and meethanical engineers.
Though our action was long delayed -indeed, until most forejgn competitors had their goods prepared or on the way to Paris-and our exhibitors were far ton few in number to udequately represent. American industry, yct it is cratify ing to note that a larger proportion were prime winners than fell to the share of any other country.

WHO WILL INVENT A BATISFACTORY MILKING MACHINE?
Noting some recent experimests with milking machines he Wevern Rural remarks that it is safe to say that the nilking machines now before the world are not what is needed. They will milk, but not so well as can be done by hand; and failing to get all the milk they tend to dry up the cows. The problem is a difficult one, yat the demand is urgent and the profit atsured for any one who will solve it suc cessfully. Tbe hural says:

* No time need be sporit in embleavoring to demonstrate the desirability or the necessity of such an invention. This, therefore, existing, we cannot secure the machine too soon Any opposition to such a contrivance as is needed, which comes of prejudice, should be imenediately overcome within oursclves and by ourselves, that no ummecusary impediment shall be phaced in the way of success. No stibbornoess on old fogyism' should prevent us from miking a curefulex amination of existing machines, that their merits or fefects may be fully demonstrated, and grenius thus shown what has beern done and what needs to be done. It would be well if our agricultural societies would hold out large inducements. to inventors to enter this field, and it in certainly the duty of dairy associations to do it."

