8ERPULAS, OR SEA WORM8

The rambler along the sea shore will not unfrequently meet with shells, stones, and other objects that have long been immersed in the waters of the ocean, more or less incrusted with masses of white, calcareous tubes, which, from their writhing furms, at once suggest to his mind the idea of worms. The old bottle, covered wi:h these familiar objects, shown in the annexed illustration, will perhaps recall forgotten subject to the mind of many a reader. These elongated, variously twisted tubes, popularly supposed to be "petrified worms," constitute the dwelling places of certain small marine worms called Serpule. In the anima kingdom these little creatures have their placein the lowest class of Articulates. This class, the Annelida, embraces an extensive series of animals usually grouped together under the common name of " worms," and comprehends four orders, as types of which we may take, for instance, the (1) sea centipede, (2) the leech, (3) the earth worm, and (4) the marine worm (serpula). This class is remarkable as being the only section of invertebrate animals which possess red blood. The worms belonging to three of these orders are erratic, but the ourth (whose type is the serpula) includes creatures which inhabit a fixed and permanent residence that serves to inclose and protect them from external injury. This is generally an elongated tube, varying in texture in different species. Sometimes it is formed by agglutinating forcign substances, such as grains of sand, small shells, etc., by means of a secretion which exudes from the surface of the body and hardens into a lough membranous substance, as in the case pl:cata (the species shown in the engraving), the tube is ho mogencous in texture, formed of calcarcous matter and apparently secreted in the same manner; for this reason the tube keeps increasing in length and diameter as long as its inhabitant continues to grow, the formation of this protecting sheath being the progressive work of the entire life of the animal. The elongated body of these worms is divided into numerous rings, and its anterior portion is rings, and its anterior portion is pread out in the form of a disk armed on each side with bundles of
coarse hairs; in this disk is the coarse hairs; in
From the sides of the mouth arise the fan-shaped respiratory ufts (shown in the enlarged figures to the right of the illustration), forming most elegant ar borescent appendages of a beautiful red color, mixed with yellow and violet, and exhibiting when expanded a spectacle of great beauty. In some species (as in the one illusrated herewith) there is a remarkable provision made for closing the tube when the worm retires within its cavity
On each side of the mouth of the worm is a fleshy filament resembling a tentacle; but one of these, ometimes the right, sometimes the left, is found to be considerably prolonged, and expanded into a fun-nel-shaped operculum or lid, which accurately fits the orifice of the tube. and thus forms a sort of door, well adapted to prevent intrusion or annoyance from external enemics.
It has been shown by experiment hat if these little creatures be taken from their shell, or the latter be detroyed, they make no attempt to form another having lost either the faculty or the instinct of doing so.

As it is in the nature of serpulas to live in numerous colonies, we usually find their tubes agglomerated into compact masses on all kinds of ubmarine objects, about which they bend and twist themselves in all sorts of shapes. The curious bottle, the shape of which is so well preserved through the mass of serpulas and oyster shells which incrust it, is among the specimens in the Museum of Natura History, at Paris.

ERNG TODY.
The singular and beautiful bird which is known by the name of King Tody, or Royal Great Crest, is a native of Brazil, and may challenge competition with many of the flycatchers for elegance of form and beauty of coloring.
It is a very rare bird, to all appearance but little known in its native land. This species is chiefly remarkable for its
ens into a tough membranous substance, as in the case and abdomen are pale fawn, warming towards chestnut on an hour or two
splendid crest, which is capable of being lowered upon the neck, or raised almost perpendicularly, in which latter position it assumes a spreading and rounded form, like an open fan.
The feathers of the crest are long and slender, and poon-shaped at their extremities. Each feather is brigh chestnut-red for the greater part of its length, a narrow tripe of rich orange succeeds, and the tip is velvet-black, encircled by a band of steel blue. As may be supposed, the effect of its spread crest is remarkably fine and striking. The upper parts of the body are dark chestnut brown, rather deeper on the quill feathers of the wings. The throat, chest,

KING TODY ame origin.
he bottom of the boiler a soft sediment was found, which was overlaid by another hard crust. The flues were incrusted on top with silicate of lime, and had at the bottom a coating of solid transparent crystals of quartz; the crystals were of rhomboidal shape, about one half inch in length, and as perfect as any other natural quartz crystals. The formation of quartz crystals of considerable size in boiling water in but a few years leads me to the belief that the large quantities of granulated quartz which were found in early days in the burning Moscow mine on the Comstock lode were of the

Quartz may thus be decomposed and made soluble by the action of steam in combination with an alkali, and then used as soluble silicate.

Fragarine.

Dr. T. L. Phipson finds in the root of he strawberry several substances closely allied to some which are contained in the cinchona barks. One of these is a compound very similar to quinovine; another, which he calls fragarianine, from the botanical name of the strawberry is a kind of tannin closely allied to quinotannic acid, but, instead of yielding civchona ed like the latter, it yiclds a somewhat imilar substance called fragarine To obain the latterabout 50 grms of thestraw berry root, in thin slices, are left for fortyight hours in a stoppered bottle, with water acidulated with about 5 per cent of hydrochloric acid. The solution filtercd off is of a pale golden-yellow color; it is strongly acidified by addition of more hydrochloric acid and boiled for As the temperature rises towards the the central line. The total length of this bird is six inches boiling point the pale yellow liquid becomes darker and and a half. We take our illustration from Wood's "Natural redder, and finally takes a splendid orange-red color. On History."

The Formation of Quartz.
A San Francisco engineer and metallurgist, J. Moshcimer writes to the London Mining Journal as follows:
A further proof of the formation of quartz from aque-

sea worms or serpulas incrusting an old bottle.

 [The figures to the right show the animals enlarged.] The filtered liquid contains glucose. boiling it becomes cloudy, and after some time fragarine is abundantly precipita:ed in flocks of a reddish-brown color. After allowing the liquid to become quite cold it is filtered, and the new substance collected is washed with cold water.Fragarine thus obtuined has the following properties: It is an amorphous reddish brown powder, highly electrical by friction, soluble to some extent in water, alcohol, and ether, dissolving in potash with a fine reddish purple color. It dissolves in concentrated sulphuricacid, and forms a conjugated acid the solution of which is brownishpurple. Boiling hydrochloric acid does not affect it. Treated with nitric acid it forms a brilliant yellow nitrocompound, different from picric acid, yielding no picramic acid when reduced by sulphide of ammonium. Chlorate of potash and hydrochloric acid mixture yields a bright yellow ch lorine compound, insoluble in water, decomposed by ammonia.

Heated in a tube fragarine yields water, is decomposed without fusion, depositing much carbon, and producing a white volatile substance which condenses in the tube and is soluble in water; the solution produces a green color with salts of iron; it is probably pyrocatechin. Melting hydrate of potash decomposes fragarine with production of dark brown substances and a little protocatechuic acid, which can be isolated by ether from the acidulated solution of the products of this reaction, and also colors iron salts green.

While fragarine is being produced by boiling with hydrochloric acid as above, there is diffused through the laboratory a very agreeable odor of essence of cedar. When the same experiment is made with an acid decoction of red and yellow cinchona barks (obtained in the cold) there is produced an odor of heated spermaceti. It is curious that both essence of cedar and cetenc of spermaceti contain 32 equivalents of carbon. Instead of giving a dirty green color with potash, as cinchona rcd does, fragurine dissolves with a ous solutions has presented itself in a steam boiler in \mid reddish or brownish purple color. This is the best way of use in one of the Nevada mines. A boiler of four feet distinguishing between these two substances. in diameter ard provided with five flues had been in use for some years; but little attention had been paid to cleaning it or blowing it off, as it is called, and a sediment accumulated until it reached the first two flues. The whole of the interior was heavily incrusted, and as it conducted too little heat the boiler had to be replaced by a new one. After cutting the former to pieces my informant, Mr. E. Watkins, M. E., found a heavy incrustation all around the inside. At

The Stiffening of Plant Stalks

The presence of silica in the stalks of grain has long been claimed as a proof of design in the structure of such stalks. The soft fiber of the growing grain would not be stiff enough to support the head; accordingly a stiffening of silica was added to the outside. Chemical analysis has shown, however that at the time when the stalk most needs stiffening it does
not contain a hundredth part of silica. Professor Caldwell neither the caustic alkalies nor concentrated hydrochloric of Cornell University derides the idea that so small a per- acid; but, like gutta percha, it is attacked by concentrated centage of a very brittle substance like silica could add toughness to a stalk; and shows that the results of experiments demonstrate the absurdity of the idea.
He says, in the Tribune, that, though nearly three fourth of the ash of wheat stalks, for example, is silica, it is found that " this apparently large proportion of silica is not in the stem itself, but mostly in the leaf, including that part of it which forms a sheath about the stem; this loosely attached sheath can evidently bear no part in supporting the head. Secondly, it has been repeatedly shown that perfect plants of wheat, rye, oats, or Indian corn, with stems of all the usual strength, can be grown in media containing no silica, and that there was none of the substance, or merely a trace of $i t$, in the ash of the plant-only what it took up from the small quantity that was dissolved out of the walls of the lass vessel in which the plants were raised
' Thirdly, it is well established, by these and other re earches, that the strength of the stalk does not depend on any of the ingredients of its ash, or of the mineral matters that it takes from the soil, and that the weakness of the stalk that causes the grain to lodge is not the result of any pecularity in its chemical composition. This weakness is rather the consequence of an abnormal mode of growth of the cells in the lower part of the stalk, where strength is most necded, these lower internodes, by reason of a deficient exposure to light, stretch themselves out and grow to an unusual length, and the cell walls are found to be un usually thin, and are therefore weak. This weakened condition of the stalk has been produced artificially by surrounding it with a tube of clay or other opaque material; and on comparing a stalk thus grown with some stalks of lodged wheat, the same unusual spindling form and thinness of cell walls were to be seen in both. Fourthly, Velter tested the comparative strength of small bundles of wheat stalks, from a plat that had been thinned out so as to admit light and arr freely. of some wheat that grew thickly together, and of some that had been manured with a soluble silica compound in addition to its regular food: the first was the strongest, and the last the weakest of the three."

The Contortion of Rocke from Heat Mechanically

 Generated.M. Daubrée, the eminent director of the School of Mines of Paris, in a paper read before the French Association, in August, says that one of the most remarkable characters of the rocks which have undergone mineralogical transformations, comprised under the name of " metamorphism," is that the rocks thus transformed are often associated, occupying together considerable territory, while other regions, still more extensive, do not present like modifications. These transformations, in all probability, have taken place under the influence of an elevated temperature; and while they are partlally due to heat from the depths of the earth, there is a cause for them which is more immediate and more gencral, that is, heat produced by mechanical actions, that have left their traces in the bendings and foldings of the strata. M. Daubrée, after a series of experiments on the heat produced in rocks by interior movements, draws the following conclusions: (1.) The rocks were already in a solid state at the period when they followed the action which contorted them; (2.) Many of these rocks during these movements acquired a laminated structure; (3.) Certain effects of regional metamorphism may be derived simply rom the heat which has been developed in the rocks by mechanical action; (4.) Fossils have been destroyed by tri turation in the interior movements of such rocks as hav become changed in texture or assumed a crystalline state

Finally," says M. Daubrée, "in rock masses wher metamorphism has been developed on a great scale, and far from any eruptive rock, the heat which has presided over the transformation of the rocks, and the appearance of new species of minerals, may have been caused by the very mechanical actions which these rocks underwent.

Balata Gum.

From an article written by Dr. W. Riegler, published in the Wochenschrift des Niederoest. Geioerbe-Vereins, we gather the following information regarding this new article of commerce, which promises to become of considerable importance in view of the ever-increasing demand for India rubber, and the rapidity with which the trees that produce both the latter and gutta percha are necessarily being destroyed. Balata is a product of the Mimusops balata (Nat. ord. Sapotacea), a tree of large dimensions growing on the banks of the Orinoco and Amazon, in South America. The milky juice is procured, like caoutchouc, by incision of the trunk. It dries very quickly on exposure to the air if the atmosphere is dry. and can be readily moulded into shape by first being soft ened in water. This gum, in its general properties, appears to be of a character intermediate between India rubber and gutta percha, possessing the elasticity of the one and the ductility of the other, without the intractability of India rubber or the brittleness of gutta percha. It is tasteless; heated, it diffuses an agreeable odor, and can be cut the same as gutta percha. Heated to a temperature of 120° Fah., i becomes soft and capable of being welded. Its melting point is 270° Fah., a temperature much higher than that necessary to melt gutta percha. It is entirely soluble, cold, in benzole and bisulphide of carbon. Under the action of hes it is likewise soluble in turpentine; in anhydrous alcohol and ether, however, it is but partially so. It is acted upon by

Abstract

sulphuric and nitric acids. Subjected to friction it becomes

 very electrical. It is probable that it will be extensively employed as an insulating medium for telegraphic purposes, for which its superiority over gutta percha has already been proved by trial. In balata, says Dr. Riegler, we have an ar ticle that gives promise of being of the highest utility; not so much on account of its possessing new properties, as because it is a new member of a group of the useful elastic gums; and which, occupying, as before remarked, an intermediate plac: between caoutchouc and gutta percha, may become under certain circumstances more valuable than either of these substances.
The Torrey Botanical Club

At the regular meeting of the Torrey Botanical Club, held at Columbia College, on Tuesday, October 8, the president, Dr. Geo. Thurber, exhibited a number of interesting Amer ican and foreign plants of his own cultivating. Among the latter were Andropogon schonanthus, or lemon grass, a species of grass which grows abundantly in India, Ceylon, and the Moluccas, and from the fragrant leaves of which is distilled an essential oil largely used in perfumery; and also an ornamental striped grass from Japan (Ularia Japonica), one of the varieties of which presented a curious example of oss variegation.
Mr. Leggett called attention to the fact that Monotropa hypopitys exlibited two very different forms; the one occurring in the early part of the season (June) being pale yellowish and odorless, and the other, appearing in August, being reddish and quite fragrant. He asked whether these two diverse forms had been properly investigated, and whether it might not be possible that they were different species.

The vice-president, Mr. A. Brown, made a valuable contribution to our present knowledge of the flora of this vicinity in the form of a list, accompanied by specimens, of over fifty species of plants that have not been.hitherto re ported. Most of these plants were found growing on a vacant lot near the depot of the New Jersey Central Rail road, at Jersey City, where they had apparently been established for years. Twenty-two of these plants are not recorded in our manuals of botany, and are from foreign countries, probably having been introduced from the ballast of ships. Of the remainder, many are from the South and West. One specimen, apparently an exotic composite, has
not yet been determined. The list was placed in the hands of the editor of the Bulletin for publication.
One of the members reported plum trees in flower at the present time on Staten Island, and exhibited specimens. The president remarked that such an occurrence was not uncommon, especially in a certain kind of harvest apple. The late fall-flowering of the horse-chestnut in the city parks has been noted by the members for several years past, and many times reported at the meetings of the club.
In an ensuing discussion on some of the Nympheacere, the question was asked, What is the use of the mucilage investing the stems of Brasenia peltata, in the economy of the plant? The president suggested that this was an interesting subject for investigation, and suggested that the members look into the matter and report at the next monthly meeting.

Immense Labor Performed by Bees.

Nectar is the termapplied by botanists to the sweet tasting fluid which is secreted within the cups of flowers; and the object gained to plants by its presence is that insects, induced to visit flowers for its sake, are useful to the plants by effecting a cross fertilization, an additional amount of vigor being thus conferred on the seeds which subsequently result, in contrast with the evil effects produced by continu ous "breeding in and in." The formation of nectar is ob served to take place most freely in hot weather, and to be prevented by cold or wet. So great economy is exercised by the plant that it is only formed at the time when insects visits would be beneficial, that is, when the anthers are ripe and shedding their pollen, or when the stigma is mature and ready to receive pollen. By biologists the visits of bees, butterflies, and other insects are believed to have exercised in past time an important influence in modifying the size, shape, color, etc., of flowers. Nectar is of course the source whence bees derive honey, but it also affords fond to many kinds of insects which do not possess the same habi as the former of storing it up. Professor Alexander S . Wilson, of Glasgow, has recently investigated the amounts of sugar contained in the nectar of various flowers, and laid the results of his labors before the British Association. He extracted the nectar with water, and determined the sugar before and after inversion by means of Fehling's copper so lution. From his table of analyses, which for our present purposes it is unnecessary to reproduce here, we select clover as an example. He found that, approximately, 100 heads of red clover yield 0.8 gramme of sugar, or 125 give 1 gramme (16 grains), or 125,0001 kilo (21 lbs.) of sugar; and as each head contains about 60 florets ($125,000 \times 60$), $7,500,000$ distinct flower tubes must be sucked in order to obtain $2 \frac{1}{5} \mathrm{lbs}$. of sugar. Now as honey, roughly, may be said to contain 75 per cent sugar, we have 1 kilogramme ($2 \frac{1}{5}$ lbs.) equivalent to $5,600,000$ flowers in round numbers, or, say, two and a half millions of visits for one pound of honey. This shows what an amazing amount of labor the bees mus perform, for their industry would thus appear to be indispensable to their very existence.

The Big Trees or Callfornia.
Professer W. H. Brewer, of Yale College, an eminent au hority on matters pertaining to the botany of California, writes to the New England Journal of Education to correct some errors made by a correspondent of that paper in regard to the "Big Trees of California "-errors which are constantly creeping into the papers, although they have often been refuted. He says:
The first error relates to their height, the second to their age.
If

If only the truth be told, they still remain the grandest trees on earth, and one of the wonders of the world. Some of the Australian Euculyptus trees exceed them in the matter of height, yet, take them all in all and as they are, the giant Sequoias are the greater. Your correspondent tells of "The Father of the Forest" being "about four hundred and fifty feet high when in his glory," as if this was a proved fact rather than a vague guess. The fact is that no one knows how high it was, for, when the grove was first discovered by white men, the prostrate tree was already partly rotten and the whole top burned away; and accounts published twenty four years ago speak of the tree as perhaps over 400 fect high when living.
The State Geological Survey carefully measured all the higher standing trees in this grove, in the Mariposa grove, and some of the trees in the other groves, and published the result years ago. In the Calaveras grove there were then 27 trees of 250 or more feet, four of which were 300 or more feet, the highest being 325 feet. Over 300 trees were measured in the Mariposa grove, the tallest of which was 272 feet. The only other tree I have seen which rivals " The Father of the Forest " in diameter is in the King's river grove, and was less than 300 feet high. There is no evidence that "The Father of the Forest" (or any other Sequoia) ever reached 350 feet, and what its height actually was can never be known
Next as to the age. The first extended description, published in Europe twenty-five years ago, "estimated" the age at several thousand years, and gave wings to the imagination as to the events in the world's history which the old trees had seen in their life-time. This error has been refuted from year to year, for I know not how long, for every scientific investigation has shown its fallacy; but the first story was so well told, and seemed so marvelous, that it is repeated by the majority of "correspondents" in some form, and I am sorry to say that clergymen and teachers are not the least common offenders. It is so much easier to repea a startling story than it is to test its accuracy, that it is probable future gencrations of correspondents in 1978 will continue to tell how large this or that tree was "when Paris carried Helen from the walls of Troy." And so your correspondent speaks of one still standing as "a tree that began its growth long before David reigned in Israel!'
We know the actual age of only one of the larger trees of the Calaveras grove, and that is the tree your correspondent tells us of as having been felled in 1853. That tree was sound to its center, and we know its age to within a very few years, and it began its growth more than twenty-five hundred years after David died. It is possible that some of the oldest trees of this species may have begun their growth over 2,000 years ago, but not at all probable that any reached back to within a thousand years of the time of David.

The Use of Snalls in Medicine

While snails are no longer an article of materia medica says the Pharmaceutical Journal, they are occasionally used in England, boiled in milk, as a popular remedy in diseases of the chest, simply, perhaps, for the reason that their mucilaginous properties are looked upon as likely to prove bene ficial. But although snail soup is usually suggestive of the ludicrous to the English mind, M. Baron Barthélemy maintains that snails are capable of rendering valuable service in most chest complaints, bronchitis, asthma, etc., because, in his words, they contain " animalized sulphur, a little pliosphate of lime, and especially carbonate, animalized, in solu tion, and in a nascent state in their mucilage." The pre parations he exhibits, at the Paris Exhibition, are "Snail Sirup," "Suail Bonbons," and "Helicine," as mucilage and powder. For these the edible snail (Helix pomatia) is used, collected in the vineyards in the south of France (preferably in the months of August and September), and care fully preserved and fed during the winter. M. Barthélemy lays great stress on this feeding, and attributes the reaso that these snails are not more generally used as an article of diet to the fact that their flavor is o nly properly developed where they obtain suitable food, as, for instance, in the vineyards of the south of France and Italy. However this may be, and whatever may be thought of the chemistry of the subject, it is certainly the fact that when this very mol lusk was a tidbit of the Roman epicure, it was, before bein cooked, fattened in the cochlearia by means of a paste com posed of meal and wine
M. Buchner, a French scientist, has discovered that a ingle drop of alcoholic extract of Campeachy wood, placed upon pure flour or bread, will cause a brownish yellow stain. If the flour contains alum, in the proportion of one or two per cent, the color will turn to a grayish blue or vio let gray. With one half per cent of alum the tint is reddish yellow, with a border of gray blue, and small blue spots can be discovered by examining it with a lens. One fourth per cent of alum is the limit of reaction, when the blue border disappears, although the small spots are faintly discernible

American Institute of the City of New York,
New York, October 14, 1878. R. J. Ceard, EsQ.. 34 Maiden Lene, New York
Dear Sir:-For your exhibit at Forty-sixth Exhbition.
of Lubricating Oils, "The Medal of Superiority" has been awarded. based upon practical test made by lrof. R. H. Thurston, of Stevens Institute. The medal will be prepared
delivery. chas. Wagen Holl,

TO INVENTORS.

An experience of more than thirty years, and the pre-
paration of not less than one hundred thousand applications for patents at bome and abroad, enable us to understand the luws and practice on both continents, and
to possess unequaled facilties for procuring patents everywhere. In addition to our facilities for preparing
drawings and specifications quickly, the applicant can rest assured that his case will be flled in the Patent Of fice without delay. Every application, in which the fees to the Patent offce the same day the papers are signed
at our offce, or received by mail, so there is no delay in flling the case, a complaint we often hear from other sources. Another advantage to the inventor in securing
his patent through the Sclentific American Patent he Scientific American, which publication ofte opens negotiations for the sale of the patent or manu
facture of the article. A synopsis of the patent laws facture of the article. A synopsts of the patent laws
in foreign countrics may be found on another page, in foreign countries may be found on another page,
and persons contemplating the securing of patents abroad are invited to write to this office for prices,
which have been reduced in accordance with the times. and our perfected facilities for conducting the business.
Address MUNN \& Co., offle SCIENTIFIC AMERICAN.

Business and tersonal.

The Charge for Insertion under this head is One Dollar
a linefor each insertion; about eight words to a line. a line for each insertion; about eight words to a line Advertisements must be rectived at publication offce
as early as Thursday morning to appear in next issue.

Vertical Engines, 10 to 15 H. P., thoroughly wellmade JohnHartrick \& Co., 47 Gold street, New York.
Magic Lanterns and Stcreopticons of all prices. Views illustrating every subject for public exhlbitions. Froft able business for a man with a small capital. Also lan
terns for college and home amusement. 74 page cata
logue free. McAllister, Me. Optictan, 49 Nassau ogue free. McAlister, MP. Optician, 49 Nassau St., N.Y.
The Asbestos Ronflig is the only reliable substitute for tin, it costs only about one half as much, is fully a
durable, and can be easily applied by any one. H. W. Johns Manufacturing Co. are the sole manufacturers. Northrop's Sheet Iron Roofing makes most durable freproof roof. Used on all kinds of buillings. send for
circular and prices. Northrop $\&$ Co, Pittsburgh, Pa. Engines, $1 / 2$ to 5 H. P. Geo. F. Shedd, Waltham, Mass Mail Bag Locks and Fastenings. New Patent. Valu
able. Address D. J. Miller, Santa Fe, New Mexico. Wanted.-Second-hand 1 to 3 H. P. Boiler and En Iror Sale Cheap.-One Horizontal Engine, 18 in. $x 36$ In. ; one Plant Hoisting Engine, four drums; and two
25
H. P. Vertical Engines. Apply to Wm . Taylor \&
New Hand, Foot, or Steam Band Saws that will cut
7% in. thick; price $\$ 35 . \quad$ G. W. Baker, Wilminaton, Del. Giant Car Pusher. Tackle Block Worke,Lockport,N.Y. Gold, Silver, and Nickel Plater wants a situation. Ad
reess Plater, Waterbury, Conn.
Wanted.-Low priced, sccond hand Lewis, Oliver \&
Phillips Bolt Header. G. C. Chase, Manchester, N. H. H. Prentiss \& Co., 14 Dey St., N. Y., Manufs. Taps,

Extension of time.-Proposals for Jacksonville Wate Works will be received until Novembe
vertisement page 237, October 12, 1878 .
Emery in bbls. and cans, all numbers. Polishing Sup
Right to manufacture a salable patented article de stred by an old established house; would pay royalty o
purchase. G. Thomas. Box 23, West Troy, N. Y. Ueefil Books for Engineers and Mechanics Ueefil Books for Engineers and Mechanics. Cata
logues free. E. \& F. N. Spon, 446 Broome St., New York. Wanted.-A foundry foreman with experience in ing wages expected. references, etc., 2116 Market $\mathbf{S t}$. St. Louls, Mo
Dead Pulleys, that stop the running of Loose Pulley and Belts, taking the strain from Line Shaft when Ma
chine isnot in use. Taper sleeve Pulley Works, Erie, Pa Pulverizing Mills for all hard substances and grinding purposes. Walker Bros. \& Co., 23 d and Wood St., Phila. The Lawrence Engine is the best. See ad. page 286. For the most substantial Wood-Working Tools, ad
dress E. \& F. Gleasen. 52 Canal St., Philadelphta, Pa. Sheet Metal Presses, Ferracute Co, Bridgeton, N. J
Manufacturers can save 25 per cent of customary out lays by use of \mathbf{H}. W. Johns' Asbestos Liquid Paints, Nickel Plating.-A white deposit guaranteed by using ourmaterial. Condit,Hanson \& V an Winkle,Newark,N.J. English Agency, 18 Caroline St., Birmingham.
Boilers ready for shipment, new and 2 d hand. For
good boiler, send to Hilles \& Jones, Tilmington, Del. Punching Presses, Drop Hainmers, and Dies for work ing Metals, etc. The Stiles \& Parker Press Co., Middle
town, Conn.
Hydraulic Presses and Jacks, new and second hand Lathes and Machinery for Polishing
E. Lyon $\&$ Co., 470 Grand St., N. Y
The Cameron Steam Pump mounted in Phesphor
Bronze is an indestructible machine
We make steel castings from $1 / 4$ to 10,000 lbs. weight,
3 times as strong as cast iron. 12.000 Crank Shafts of thi steel now running and proved superior to wrought iron. Circulars and price list free. Address Che
Castings Co., Evelina St., Philadelphia, Pa.
Diamond Drills, J Dickinan, 44 Name

The genuine Asbestos Steam Pipe and Boiler Coverings are the most durable, effeotive, and economical of
any in use. H. W. Johns Manufacturing Company, 88 Maiaen Lane, New York, are the sole manufacturers. Do not be deceived by worthless imitations.
Oak Tanned Leather Belting, Rubber Belting, Cotton Belting, Round Leather
8 Park Place, New York
Machine Cut Brass Gear Wheels for Models, etc. (new list). Models, experimental work, and machine wor Elevators, Freight and Passenger, Shafting, Pulleys, Wheels and Pinions heavy and light remarkably Wheels and Pinions, heavy and light, remarkably
trong and durable. Espectally suited for sugar mills strong and durable. Espectally suited for sugar milli
and similar work. Pittsburgh Steel Casting Company Pittsburgh, Pa.
Self-feeding upright Drilling Machine of suptrior
onstruction. Drills holes from 36 to $\$$ in. diameter. construction. Drills holes from 36 to $\$$ in. d
Holly System of Water Supply and Fire Protection for Cities and villages.
Hand Fire Engines, Lift and Force Pumps for fire Falls, N. Y., U.S.A
The Turbine Wheel made by Risdon \& Co., Mt. Holly, For Shafts, Pulleys, or Hangers, call and see stock ept at 79 Liberty St. Wm. Sellers \& Co.
Wm. Sellers \& Co., Phila., have introduced
Injector, worked by a single motion of a lever.
Address Star Tool Co., Providence, R. I., for Scre Cutting Engine Lathes of 13, 15, 18, and 21 in . swing. Latest and best Books on Steam Engineering. Sen
stamp for catalogue. F. Keppy, Bridgeport, Conn. Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferior. Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. Standard Bethg, Packing, Ne Hose
The best is the cheapest. New York Be
ing Compang, 37 and 38 Park Row, N. \mathbf{Y}.
For Soid Wrought Iron Beams, etc., see advertise-
mettit. Address Union Iron Mills, Pittsburgh, Pa.. for Thograph, etc.
The Scientific American Export Edition is pub lished monthly, about the 15th of each month. Ever ing weekly numbers of the SCIENTIFIC AMERICAN, with other appropriate contents, business announcements, etc. It forms a large and splendid periodical of nearly one hundred quarto pages, each number illustrated with about one hundred engravings.
of American progress in the arts.
Best Wood Cutting Machinery, of the latest improved kinds, eminently superior, manufactured by Bentel kinds, eminently superior, manufactured by Be
Margedant \& Co., Hamilton. Ohio, at lowest prices. Presses, Dies, and Tools for working Sheet Metals, etc. Fruit and other Can Tools. Bliss \& Williams, Brooklyn,
N. Y., and Paris Exposition, 1888 .

(1) G. S. Y. writes: Is the manufacture sugar from the beet root a success? Are there any fac tories for its manufacture in this country, and if so where located? A. Consult the Scientific American
Supremment, pp. 1947, 1963, 1324, 1032, and Scientific Supflement, pp. 1947, 1963
American. p. 169, vol. 37.
(2) A. F. B. asks: 1. Was there a good and sufficient reason for basing our system of numeration
upon 10 rather than 12 parts? If so, what? A. The upon 10 rather than 12 parts? If so, what? A. The
decimal system is not the best; but it is historical, decimal system is not the bcst; but it is historical,
founded on the circumstance that we have ten fingers and not twelve, or any other number. 2. What suffl tion? A. No reason but custom. 3. Are any or all of tion? A. No reason but custom. 3. Are any or all of
the other branches equally faulty? A. All human devices fall short of ideal perfection.
(3) J. M. McC. asks: 1. What are the capabilities of a rather strong medical magneto-electric machine\% Can I magnetize with it ironand steel and make
magnets strong enough for a telephone; or strong enough to serve as magnets in a larger magneto-electric machine? Can I electroplate with it? A. Your machine is not suited toany of the purposes named. 2.
By what rule can I calculate the size or length of wire By what rule can I calculate the size or length of wire
required in the bobbins for a magnet of given size? A. required in the bobbins for a magnet of given size? A. magnet is applied. 3. What battery would be best for a good medical galvano-faradic machine-how many pairs
A. An ordinary sulphate of copper battery, or tw amall cells of Marié Davy sulphate of mercury. 4.What size of induction coil? A. See p. 203 (14), current volume of Scientifio Ambrican.
(4) S. B. T. asks (1) for a recipe for making glue to fasten leather to iron, in order to cover iron pulleys. A. 1 part of crushed nutgalls is digested 6 hours
with 8 parts distilled water, and strained. Glue is macwith 8 parts distilled water, and strained. Glue is mac-
erated in its own weight of water for 24 hours and then erated in its own weight of water for 24 hours and then
dissolved. The warm infusion of galls is spread upon dissolved. The warm infusion of galls is spread upon
the leather, the glue solution upon the roughened surface of the warm metal; the moist leather is pressed mak rubber belts adherc to pulleys. A. We think you shor:2d ase wider belts or larger pulleys if the adhesion is Insufflcient. It is a good plan to occasionally wash theworn surface of rubberbelts with soap and water. 3. Also a glue for sticking leather to leather at splices.

See recipes on p. 187 (5), in current volume.
(5) I. H. A. writes: I have been making a mercurial barometer. Can you tell me how to proceed
to set the scale? A. Zero of your scale is at the level of the mercury in the cistern. The scale simply indicates the height in inches of the column of mercury ontained by the tube.
(6) H. I. writes: A. says the whole working power of steam can only be obtained by an uninter-
rupted flow of steam from the boiler into the cylinder. B. says the same amount of power can be obtained if $\left\lvert\, \begin{aligned} & \text { the steamcomes from the boiler in puffs, provided these } \\ & \text { puffs are sufficiently rapid (say ten puffs per second). }\end{aligned}\right.$

Who is right? A. We think it might be possible, theo-
retically, to obtain the whole power with either system. (7) T. B. O. asks for a recipe for a walnut stain. A. Water, 1 quart; sal soda, 11/2 oz.; Vandyke brown, $23 / 2$ ozs.; potassium bichromate, 34 to $1 / 2$ oz. boil for ten minutes, replacing the water lostb y evapor-
ation. Use hot, and allow the work to dry thoroughly before oiling or varmishing.
(8) M. T. writes: 1. In the Scientific American of August 24 you give the plan of a simple phonograph, but you do not tell what proportions to 24 inches external diameter. The small aperture 16 inch diameter. 2. What size should the diaphragm be A $z 4$ inches, leaving a portion, $1 x$ inches diameter, free to vibrate. 3.What wouldmake agood spring? A.Wood,
steel or brass. 4. Will the machine work perfectly steel or brass. 4. Will the machine work perfectly when properly mades A. Yes, with careful manage
ment. 5. What should the body of the instrument be nade of? A. Wood of almost any kind. Mahogany, hink, would be best.
(9) E. E. writes: I want to make a Prussian blue that willdissolve in water. I have made a blue, bu it is insoluble. A. Mix 1 lb . of the dry blue with a little hot water to form a paste, and triturate this with iate).
(10) J. L. S. asks: What is the best polish for cleaning the end of the cylinder, and caps that fit
over the end of the cut-off? A. One of the best is tripoli, applied with a piece of fiannel and a drop of oil. fiour and oil. In some cases it is preferable to use firs a little emery moistened with solution of osalic acid in or 6 parts of warm water.
(11) F. H. D. asks: Did you ever know the water to leave the gauge glass entirely after the fires had been banked under the boiler and the steam pressure
cone of its own accord? What is the cause of it doing so? It is a case that has come under my own per-
sonal observation, all the valves being shut at the time; when on opening the gauge cock and air being admitted the water will return gradually, until the water resume for water to fall in the gauge when steam goes down or water to fall in the gauge when steam goes down casementioned by you, as the water shows on the ad
mission of air, we are inclined to think that the connec tions between the gauge and the boiler must be partly closed, and that there must be a small leak in the gauge
through which air could enter as a vacuum formed in through which air could enter as a vacuum formed in
the boiler. Air entering the boiler through the gauge the boiler. Air entering the boiler thro
in this way would carry the water with it.
(12) H. D. H. asks: What is the intrinsic . Coin value of fine metal 20.67 per troy ounce; 18 A. Coin value of fine metal 20.67
carat $\frac{1}{1}$ and 18 carat $\frac{1}{\bar{n}}$ of this value.
(13) G. W. B. asks if forest leaves will an swer forfilling between the two walls of an icehouse
builtabove ground. A. If the leaves are thoroughly built above ground. A. If the leaves are thoroughly
dried, broken, and not too closely packed, they will an dried, broken, and not too closely packed, they will an
swer the purpose very well. Sawdust, however, is con idered preferable.
(14) E. P. writes: I am making a medicine (of which I am not the inventor; however it is a eecret).
Can I sellit, or must I have a license? A. If the medicine is not patented, we think you may sell it.

1. ScIENTIFIC AMERICAN, vol. 39, p. 171 (2), contains a
a
recipe for a silver solution. I made it so, but took too much potassium cyanide to settle the silver nitrate,
which produced a white foam. What is that foam, and which produced a white foam. What is that foam, and
what does the liquid contain? Can it be usedyet,and how? A. If the water used was free from chlorides, the white body is silver cyanide. Dilute the misture somewhat with warm water and let it stand, when the precipitate
will settle. If too much potassium cyanide has been added, the supernatant liquid will give a fresh precipitate on addition of more silver nitrate. To prepare silver cyanide the proportion should be 85 parts of silver
ande. nitrate to 33 parts of dry potassium cyanide. 2. How
much potassium cyanidefor 1 gallon solution would you recommends I have a few recipes which differ from 115 to 8 ozs. A. The precipitate requires for its proper solution at least 33 additional parts of potassium cya-
mide dissolved in water. Electroplaters' baths usually mide dissolved in water. Electroplaters' baths usually
contain much free potassium cyanide-water, 1 gallon; contain much free potassium cyanide-water, 1 gallon,
potassium cyanide, 9 to 12 ozs ; silver cyanide, 1 oz . 3 How can I make a silver rolution for a bright deposit? A. We know of nothing that will obviate the necessity
of burnishing; polishing is not always necessary. It is said that a little sulphuret of carbon added to the plating solution prevents the chalky appearance and
givesthe deposit the appearance of metallic silver. 4. oes gold plating need any polishing? A. Yes.
(15) F. H. wishes to know what material is sed to prevent rubber in vulcanizing from sticking to iron, brass or steel moulds. A. Soapstone (steatite) pow der is used for this purpose.
Can you give me the addres of some manufacturing From any large dealer in sheet iron.
(16) H. L. A. asks: What is the percentage of rosin oil in rosin? What is the residue, after the o tilled for oil making? A. When rosin is distilled it yieds about 74 per cent of liquid distillation. The first portions, called essence of rosin, are yellow and strong smelling. Later in the distillation "pinolin," or rosin oil proper, passes over. The latter is used in paints, for
the manufacture of printer's ink, in soap making and in cheap lubricators. The pitchy residue may be use for rooflng and similar purposes. The stills may be
(17) J. S. B. writes: In the September 7 number of the Scientific American you speak
"Mosso's plethysphygmograph." Please state what is Aosso's plethysphygmograph. PI is the name state what it is. A. It is the name given by Mr. Mosso to an instru-
ment of bis invention designed for observing the varia(18) W .
(18) W. H. B. asks for an electro silver plating solution; also what is the best mixture for
removing grease, etc., from brass before plating. A.

See p. 171 (2), current volume, Scientific American. lution of caustic soda to remove grease, and (without touching) rinse with clean water, dip for a few moments in nitric acid diluted with two parts of water, rinse
a ain and scour with fine clean sand and a stiff brush; then dip momentarily in the an sand and a stiff brush, and transfer immediately to the plating bath.
(19) A. T. R. writes: At our temperance meeting recently there was a spirited discussion in reference to the composition of soda water, one man claiming that he could drink enough to produce intoxi-
cation; another claimed that its ingredients were wholly cation; another claimed that its ingredients were wholly
mineral, and therefore not intoxicating. A Common mineral, and therefore not intoxicating. A Common
soda water is water supercharged with carbomic acid. It is not intoxicating. Some of the sirups used with it not unfrequently contain alcohol.
(20) A. T. J. asks: 1. What is the process for making artificial ice? A. There are several pro-
cesses. See pp. 159 and 387 , vol. 38 , and 95,168 , and 335, vol. 37, Scientific American. Also pp 425,507, 1159, 1430, and 1348, Scientific American Surle book which treats of the subject "Water," and that subject only. A. "Forms of Water "-Tyndall.
(21) C. K. asks how to fasten rubber on brass. A. Meit together in an iron vessel equal
of pitch and gutta percha. Use moderately hot.
(22) E. W. E. asks: Is there any recipe to make cloth waterproof, and one to make it mildew prooff A. Pass the cloth slowly through a strong,
boiling aqueous solution of yellow soap, and then di. gest for an hour or more in a strong bath of alum on lead acetate (sugar of lead) dissolved in water.
(23) F. G. H. asks: How can I make a good ickel plating liquid, and use it? A. Dissolve 34 lb . of ing chloride, in a gallon of soft water. See article on nickel plating on p. 209, vol. 38, ScIENTIFIC American. Where can silk and cotton covered wire be bought
A. Of any dealer in telegraph and electrical supplies A. Of any dealer in telegrap
See our advertising columns.

See our advertising columns.
I saw somewhere then
I saw somewhere that the saltness of the oceanand Great Salt Lake was owing to the water escaping onl, by evaporation. Is this true? A. The saltness is duy
to a greater loss of water by evaporation than other wise.
(24) M. C. B. asks for a recipe for remov ng superfluous hair. A. See p. 10\% (8), vol. 38.
Can you inform me how to give canvas a soft, Can you inform me how to give canvas a soft, blach
waterproof coating that will not harden and crack of A. Soften 2 parts of gutta percha with 3 or 4 parts of benzole by aid of heat over a water bath. Boil veger. table oil to the consistence of jelly, cool, and add 75 peir cent of benzole. To seven gallons of this add threv
gallons of the gutta percha solution, and an additiona) gallons of the gutta percha solution, and an additions
gallon of benzole containing a sufficient quantity or gallon of benzole containing a sufficient q
lampblack, graphite, and boneblack to color.
(25) L. V. S. asks: Is there any substance what is it? A. As we understand you, no.
(26) M. L. A. writes: 1. Two men pulling apon the ends of a rope in opposite directions, eacl. 25 lbs .2 . If one end is fast, and 25 lbs . weight appliet: on the other, what strain does the rope sustain? A. \mathcal{M}.
(27) N. B. -See pp. 1326, Supplement No. 33, and 48, current volume, Scientific American. reats fully on the practical manufacture of Portlan! treats fully on the practical manufacture of Portian,
and other ceinents. A. Consult Reid's "Practicul
(29) I. E. P. asks: 1. Does any white lead sed for painting or commercial purposes contain 98 per
ent pure lead? A. No. Commercial white lead is a compound of lead carbonate and hydrate in variabla proportions. In general the composition may be repre. sented by the formula $2 \mathrm{PbCO}_{3}+\mathrm{PbH}_{2} \mathrm{O}_{2}$. 2. I get frome
a very fine article, after treating it with dilute nitric a very fine article, after treating it with dilute nitric
acid, a precipitate which does not entirely dissolve is acid, a precipitate which does not entirely dissolve is
muriatic acid, which would seem o show something be. muriatic acid, which would seem o show something be.
ides baryta. What is it? A. It is frequently adulter. ated with barium sulphate (heavy spar), barium carbon ate (witherite), calcium carbonate and zinc oxide, and sometimes with pipe clay or kaolin. Of these the frrs and last named substances remain as a residue after treatment with nitric and hydrochloric acids. The residue may also contain lead sulphate. 3. What is the best and most decisive test for white lead, and how cam
I ascertain the percentage of adulteration? A. See p. I ascertain the percentage of adulteration? A.
269 , Thorpe's "Quantitative Chemical Analysis."
(30) M. J. S. asks: 1. How can I separate small particles of emery gathered by means of an ex-
haust pan? We use wooden wheels covered with eather, upon which we glue No. 60 emery. The emery is still sharp, but cannot be used on account of the iron
mixed with it . A. Use a magnet. 2. How can I cemixed with it. A. Use a magnet. 2. How can I ce-
ment leather to the periphery of an iron wheel, so that ment leather to the periphery of an iron wheel, so that
it will withstand continual jar, to be used as a buff it will withstand continual jar, to be used as a buff
wheel subjected to rough usage? A. Melt together in an ron vessel equal parts of pitch and gutta percha; oughen the iron and use the cement.
What is the best method for using exhaust steam to create a strong draught for two boilers 30 inches diame-
ter and 30 feet long? A. Direct a thin flat jet of steam ter and 30 feet long?
(31) E.A. D.P. asks: Will well glazed earthen jars do for a battery for a short
mile, as well as glass? A. Yes.
(32) C. L. writes: 1. In your issue of 28th ait., yon describe a simple electric light, Should the
arbon holders be made of brass? A. Yes. 2. Could the upright be made of varnished wood? A. Yes. 3. What is a Bunsen cellp A. See reply (24), p. 139, curent volume of Scientific American. 4. Would the
ight produced by this apparatus be sufficient to light a oom 20×20) batterie
page.

