
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENLE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Chard's Labricene and Caps.

The secret of economical lubricating lies in the application of a durable lubricator exactly when and where it is needed, without failure and without excess. This end appears to be very happily attained by the lubricating cups manufactured by Mr. R. J Chard, 134 Maiden Lane, New York city, and illustrated in our issue of August 17 last. The cups are charged with "lubricene," prepared from oil by a patented process, and the feeding is so arranged as to secure the uniform lubrication of bearings without waste and at the lowest cost. As was shown in the engraving referred the cup and rests upon the bearing. Copper being a good conductor of heat, the feeder will be warmed by friction conductor of heat, the feeder will be warmed by friction
enough to secure a sufficient flow of the lubricant while the bearing is comparatively cool. The spring to the feeder is regulated by a screw cap so as to increase or diminish the feed according to the requirements of the bearing, thus giving a perfectly automatic friction feeding cup.
It is often asked how one man can run his mill and make money while his neighbor, who works just as hard, falls behind. The difference may often be found in the single circumstance that the one takes advantage of every real imcumstance that the one takes advantage of every real im-
provement bearing on his work, and reaps a benefit that the other misses. In the items of economy, proper lubrication is not insignificant. With every diminution in friction there is an equal saving of power, and very often a not less important saving in time. We are informed that the test of everyday use sustains the decision of the American Insti-

NEW YORK, NOVEMBER 2, 1878.

as that of the judges of the Centennial Exhibition in regard to the unequaled excellence of Mr. Chard's lubricating cup and compound.

THE FORSTER-FIRMM AMALGAMATOR

In our issue of December 22. 1877, we illustrated the system of amalgamating the precious metals patented by Messrs. Forster and Firmin, of Norristown, Pa., which brought to the inventors inquiries from all parts of the world.
In this process the mercury is atomized by steam, compressed air, water, or other equivalent medium, and forced, after the manner of the well known sand blast, through a stream of falling ore, which may be either dry or wet.
Since the description above referred to the inventors of this amalgamator have been conducting practical experiments which have resulted in important modifications and improvements, which increase the efflciency of the machines and reduce both the time and expense of working. In addition to the improvements in the amalgamator proper, Messrs. Forster and Firmin have perfected and patented a system of settlers, the advantages of which will be obvious to the practical miner. These settlers are arranged as shown in the engraving below, and each consists of a cylindrical vessel with a conical bottom, containing an agitator, and having a partition extending from the top of the vessel nearly to the upper side of the agitator. The pulverized ore, containing free gold or silver, is fed from the hopper to the horizontal tube which leads to the large vertical tube or
chamber, shown in section in Fig. 2 .

While in the act of falling the ore is impinged upon by a stream of mercury which escapes from the small receptacle at the rear of the hopper through an inner pipe. The flow of ore and mercury is broken up and carried for ward by steam or air pressure. The ore which flows from the amalgamator is discharged into the washer, where it is heated by steam and worked for a short time until it is mulched sufficiently to flow evenly. Water is then injected into the chamber at the bottom of the washer, when the bulk of the mercury and amalgam is withdrawn, and the waste flows into the first settler of the series, and the water passes on until it finally escapes from the lower settler. The mercury is deposited in the central conical space in the ves sels, from which it is removed occasionally through the dis charge cocks. One of the settlers is provided with amalgamated copper plates, which are vibrated by the action of the water. This effects the arrest of the fine particles of gold or mercury carried in the water as it passes between them, while any gold leaf which may float on the surface is retained by the partitions. The process of amalgamating in this apparatus is continuous.
Fig. 3, page 271, is a modification in the amalgamator, in which three or more jets of mingled ore and mercury meet in a common center in the receiver or chamber, and intimately mixed.
The inventors state that with their apparatus they have obtained the entire quantity of metal contained in the ore, and have recovered from 98 to 100 per cent of the mercury used, the whole operation from the commencement to the [Continued on page 274.]

THE FORSTER-FIRMM AMALGAMATOR.

LYMAN'S TRIGONOMETER.

There is a wide contrast between the accuracy of engineers' field instruments and the draughting instruments used in the office. It is when the field notes are brought to the office, the engineer's troubles begin. His drawing boards warp: his rulcrs bend, or have not parallel edges; his rolling parallel rulers wear their wheels unequally; his T squares are never square; his glass triangles will not prove four times round a circle; his paper protractor is badly divided, or shrinks in one direction and is awkward to use; his horn, brass or ivory semicircles are wretchedly manufactured; his protractor makes holes in his paper, and is always in the way, and, if taken up, cannot be put down again true to the meridian; his scales are difficult to read and subdivide by the eye, stick to the paper, or slip too easily over it; and his prick point makes oval holes instead of circular ones, and not exactly at the division line of his scale.
Working under these disadvantages, it is no wonder that the engineer at his office table loses the keen zest for ac curacy which characterizes him in the field. His lines are all more or less forced to a conclusion, and he feels but little disposition to carry his topographical work a single rod beyond compulsion.
To remedy these defects, Professor Josiah Lyman, of Lenox, Mass., many years since gave his study and experiment to protractors and scales. This resulted in the invention of the trigonometer shown in the accompanying engraving. It is an ingenious and strictly scientific combina ton, uniting in one machine the protractor, base bar,sliding square or T , and sliding scale.
The original instrument has been improved so that the under surface, including base and arm, is brought into the same plane with the draughting board or paper upon it, thus enabling the draughtsman to lay it flat upon any part thereof.

A steel bar is arranged so that it may be instantly clamped upon either the side or end borders of the board, or at right angles (at any point) across the board, or diagonally at any required angle across any one of its corners, upon which the trigonometer slides and to which it is held by spring force.
The better class of instruments are provided with a vernier plate capable of being shifted to right or left 45° or less, and there clamped during any given operation. This arrangement, however, is applied only to that class of the instruments which is furnished with a tangent fixture for nice motion. But the same facility is practically secured to the other class by means of the steel bar just described. A sliding square, either of whose arms (ordinarily of 15 and 6 inches in length respectively) may be held in contact with either edge of the protractor arm.

Triangular or trileaved scales may be used in connection with this in tion with this instrument, being clamped by means of the springs $S p$. The protractor plate, B, which constitutes the base of the trigonometer, is made of German silver or hard brass silver plated, brass silver plated, about the twelfth of an inch thick, having a face usually 10 inches in length. At an inch or a little less back from the face is inserted the pivot, $\mathbf{P} v$, on the pivot, $\mathrm{P} v$, on which turns to right or left the arm of

both the direct angle and the complement of the same. Therefore, in laying down the direct angle, the protractor arm only is required for guiding and operating the sliding scale; but in laying down the complementary angle, the sliding square is necessary; and this answers all the purposes of rectangular borders to the board.
This instrument may be applied to all problems for obtaining the varied lines and angles in architecture, or the construction of bridges or other similar works, with the sizes, forms, and position of all timbers, blocks of wood, stone or iron connected therewith.

For the use of engineers in cross sectioning excavations of earth or rock, for railroads or canals, or any other similar work, it is convenient and expeditious. The same is true of its application to military fortifications, as well as in the construction of machinery in the navy yards or other public works. When known by mariners, it will often super sede the use of the tables in their daily labors.
It is also applicable to the mensuration of heights and disances, and especially to the projection of eclipses and other alculations connected with astronomy.
With the greatest facility and accuracy, therefore, may any desired operation of triangulation be effected or trigo nometrical problems solved by the use of this instrument. 1

passed through a single amalgamator at the rate of 3,000 lbs. per hour; 99 per cent of silver and $971 \frac{1}{2}$ per cent of the mercury were recovered within an hour. During another similar trial ore was passed through at the rate of $3,600 \mathrm{lbs}$. per hour, $97 \cdot 88$ per cent of mercury and silver together were recovered in 45 minutes, and within half an hour ($11 / 4$ hour from the start) 97 per cent of the silver was crucibled; subsequently an additional quantity of amalgam was collected and treated, bringing up the result to fulls 99 per cent of silver and $991 / 2$ per cent of mercury recovered. These trials were witnessed by eminent metallurgists and mining ex perts, who did not hesitate to express their satisfaction.
For further particulars see advertisement of the ForsterFirmin Gold and Silver Amalgamating Company, of Norristown, Pa., in our advertising columns.

The Poplar as a Lightning Condnctor.

A fresh proof that the upper part of trees, especially of poplars, is an excellent conductor of electricity (which only rends or shatters the wood when it finds a passage in the trunk) is afforded by Nature in an account of the effects of lightning on an aspen (Populus tremula) situated in a wood near the château of Crans on the shore of the Lake of Geneva. The lightning chooses by preference the poplar as a conductor to reach the ground, and the case under con sideration is a striking one, as the tree was surrounded by other kinds, particularly firs, taller than it. Two great branches, of 18 and 20 inches diameter, which surmounted it, were struck by the lightning, and led it to the ground without having received the least apparent injury, while the trunk below them was absolutely shattered. Other re cent observations prove the preference of lightning for trees situated near the streams or reservoirs of water, so that the best conductor for a house is a lofty tree, a poplar especially situated between the house and a well, a pond, or a neigh boring stream.

THE PARIS EXHDBITION.
The main building, or Palace of the Exhibition, in the Champ de Mars, is represented in the engraving on the opposite page. This grand façade, raised above a prolonged errace, with several approaches by steps, protected by curv ing balustrades, presents a central arched nave, of superio dimensions, with transepts extending far to the right and left, each terminated by a domed tower of four arched sides, which is supported by angle buttresses. This is the general form of the edifice, while its aspect is further relieved by the series of perpendicular external beams, surmounted with decorative coronets and flags, rising at certain intervals along the front elevation. The lines of the central structure are boldly defined, its great arch being deeply recessed, and crossed by a transverse balcony above the numerous small doorways, with side openings, which give a view of the staircases inside, and with huge scroll-shaped buttresses upholding the balcony, while the upper part of the arch is ornamented with escutcheons, and with the initials of the "République Française," supported by winged seraphs, at the summit of all. In the grounds on this side of the Exhibition Palace along the broad graveled paths which cannot easily be overcrowded, there is ample space for a promenade in the fresh air; or a brief repose of body and mind can be en joyed in the com ortable seats, covered with basket work to form a portable alcove or summer house, which are placed for the accommodation of weary visitors to the Exhibition.
We take our illustration from the London News.

American Export of Agricaltural Machinery.

A report of the Bureau of Statistics shows that in the year ending June 30,1878 , the exports of mowers and reapers amounted to 10,496 , valued at $\$ 1,018,916$. Of plows and cultivators there were exported 20,710 , valued at $\$ 154,977$. Of all other agricultural implements and tools there was exported $\$ 1,379,467$ worth. Taking all the exports grouped under the head of agricultural implements, the gain was nearly fifty per cent as compared with the same for nearl
1877.

Dangers from Impure Potassium Iodide

It appears from a discussion which took place recently at a meeting of the Society of Medical and Natural Sciences, at Brussels, that the greatest dangeraccompanies the admin istration of iodide of potassium containing a minute pro portion of the iodate. Dr. Melsens, the learned Professor of Chemistry at the Veterinary School, in support of this statement detailed some experiments with dogs, in which these animals had rapidly succumbed after injection of iodide of potassium containing a mere trace of iodate. The question now to be solved is whether the iodate of potassium question now to be solved is whether the iodate of potassium
itself is a salt possessing such marked toxic properties, or itself is a salt possessing such marked toxic properties, or
whether its presence gives rise to a minute quantity of free iodine in contact with the blood. At all events, it is a subject that will undoubtedly attract a good deal of attention, and points at once to the absolute necessity of having for pharmaceutical use nothing but iodide of potassium that is pharmacally pure.

