HOW SUBMARINE CABLES ARE DESTROYED.

 It might reasonably be supposed that after a well-protected telegraph cable once reaches its place upon the ocean bed it would not be liable to very many causes of injury beyond the natural deterioration of its protecting envelope. .But that such is not the case will be seen from the following facts, for which, with the accompanying illustrations, we are indebted to La Nature :In northern iatitudes cables are frequently ruptured by icebergs or floes. The former often draw several hundred feet of water, and where the sea is shallow come in contac with and so break the cable. Another cause of rupture is sharp rocks on the ocean bottom, against the edges of which the cable chafes until the outer envelope and layer after layer of the protecting materialare worn through. Earth contact of the interior conducting wires then usually occurs, and the cable no longer transmits signals. Other natural causes of estruction are coral banks, earthquakes, submarine current and the elevated temperature of tropical waters.
Numerous instances have occurred where cables have been damaged by fish, a notable example happening in the cable between Brazil and Portugal, and the coasting cables which run along the eastern shore of the South American continent On these lines the cable is almost chronically attacked by sawfish. Pieces of the bone of the saw of this animal havc repeatedly been found imbedded in the coverings so deeply that the interior conducting wires themselves are injured Fig. 3 shows a section of the cable with the bone found in closed therein. No less than five times have the cables abov named been injured by sawfish attacks. It is supposed that the fish runs into the cable, and as its temper is none of the best, it becomes enraged and vents its anger on the obstruction by blows of its saw. An even more curious instance occurred not long ago in the cable across the Persian Gulf, which suddenly became inoperative. On examination it was found that a large whale had become entangled in the line. The animal was covered with parasites, and it is supposed that it attempted to use the cable as a rubbing post in order to rid itself of its annoying appendages. One stroke of its powerful tail probably broke the line, and then in rolling over and over the whale wrapped itself so tightly in the coil that it committed suicide by strangulation.

Among the worst enemies of submarine cables are three insects. The teredo navalis and its congener the xylophaga, which Huxley first discovered in 1860 in one of the cables of the Levant, enter the hemp covering and penetrate to the gutta percha, wherever the interstices of the wires of the exterior envelope afford them an opening. The teredo is a worm that constructs a tube for itself out of its calcareous secretion. The xylophaga is a bivalve, which does not penetrate deeply into the gutta percha, but simply attaches one of its shells thereto, chafing the material so that considerable losses of current occur The teredo norvegica, Fig. 1, is quite a large worm, having
two shells on its anterior part, with which it can cut through the hardest wood. It belongs to the genus of acephalous mollusks, and no less than 24 different species of it have been recognized.
The limnoria lignorum, Fig. 2, is a small crustacean about the size of an ant. It penetrates into the interstices of the wire envelope of the cable and makes its way to the core. The cables in the Persian Gulf and Indian Ocean ąnd also on the Irish coast have been seriously damaged by the rav ages of this creature.

NEW APPARATUS FOR THE COMPRESSION OF HYDROGEN AND OXYGEN

M. Bouvet has recently addressed a note to the French Academy of Sciences, calling attention to the new appara tus illustrated herewith, by means of which he is enabled to subject oxygen and hydrogen to very high pressures. A is a voltameter formed of a block of glass in which are hollowed two cavities, CD, the cubical contents of one exactly double that of the other. The voltameter is inclosed in a strong metal case, $\cdot \mathrm{B}$, and the orifice through which the for mer is introduced is closed by the screw, F. A special opening, G, al lows of the introduction of the two wires which communicate with the electrodes in the cavities, C.D. The two channels, H, closed by screws, allow the air to be driven out of the apparatus before the beginning of the experiment. At J is a tube in communication with a reservoir K : The latter is closed by a strong screw, M, which serves as a piston to cause an augmentation of press ure in the cavities, $C D$, during the experiment

Supposing that these cavities to the height $a b$, will contain, the one, one quart, the other, two quarts, and that the apparatus is filled with slightly acidulated water from which the air has been expelled. Then, the apparatus being closed, the current from a battery is sent into the voltameter, the positive electrode being in cavity C and the negative one in D. As the water decomposes, it may be supposed
that its level in the cavities falls to b, hence all the wate contained in said cavities may be considered as transformed into gas; and this, therefore, must be submitted to a considerable pressure which it is easy to calculate. The two cavities contain 8.7 cubic feet of water. Water being

Fig. 1.-The teredo.
taken as incompressible, it is therefore here replaced by $8 \cdot 7$ cubic feet of gas. Knowing the weight of hydro gen and oxygen, it is not difficult to find that the volumes of gas, produced as described, are submitted to mes of gas, produced as described, are submitted to

Fig. 2.-LIMNORIA LIGNORUM.
if the piston screw be operated in the reservoir, K, to drive water into the cavities, if the gas in the latter be thus educed in volume in the proportion of 1 to $\frac{1}{2}$, it follows tha the pressure thereon is doubled and becomes 3,709 atmos pheres or $55,635 \mathrm{lbs}$. The current can again be established, the water again caused to descend to the level, b, and th

Fig. 3.-BONE IN TELEGRAPH CABLE.
operation as above described repeated; so that ultimately the apparatus.

Joseph S. Linn, the aeronaut who on one of his ascent in England reached an altitude of 32,000 feet, recently made an ascent of 7,000 feet near Caranjah, in India. He is conan ascent of, 000 feet near Caranjah, in India. He is con-

NEW APPARATUS FOR THE COMPRESSION OF HYDROGEN AND OXYGEN.

New Agricultural Inventions.

Mr. Thomas G. Bass, of Pittsburg, Texas, has devised a new Single Tree for Plows, etc., which is made wholly of wood. The construction, which is very simple, obviates vertical play and prevents the traces either from coming off or from becoming loose and falling under the horses' feet. A new Corn Marker, patented by Mr. Michael Akerman, of Steamboat Rock, Iowa, embodies a self-dropper and marker to operate the dropping slide and to mark the ground opposite the hills. The construction embodies numerous new devices, and is ingenious and effective.
Mr. Näthan L. King, of Catskill, N. Y., is the inventor of a novel Shearing Instrument for clipping horses, removing wool from sheep, etc. The outward motion of a follower carries a plate forward toward teeth, and curved blades are caused to swing on pivots, so that their cutting edges follow those of the plate, thus making a shearing stroke. The teeth prevent the wool or hair from sliding between the edges of the instrument
An improved Cultivator, patented by Messrs. John S. and Chas. A. Johnston, of Rockford, Ill., is so constructed that the plows may be raised from the ground by the backward movement of the driver, and that it may be easily guided and controlled. The construction is simple and ingenious.
A.new Rotary Cultivator, patented by Messrs. Chas. C. Breeden, and O. T. Wheeler, of Bedford, Ky., is so constructed as to stir the ground thoroughly while leaving its surface smooth. It is also of light draft, and it may be adjusted to work at any desired distance from the plants.
Messrs. Philander W. and Hiram G. Briggs, of Howell, Mich., have patented a new Grain Drill, which enables grain to be put in the ground to any depth, prevents its being covered too deeply when it may be advisable to run the drills zigzag, and stops loose stones from falling upon the seed.
A new Gate has been patented by Mr. Sanford W. Erwin, of Fayette county, Ind., which may be conveniently opened by hand or by the wheels of a passing vehicle. The construction is novel and very ingenious.
An improved Oatmeal Cutter, invented by Mr. Herbert Z Cole, of Cortland, Ohio, consists in the combina tion with a cutting cylinder, formed of a series of toothed circular disks, of a stationary cutting plate provided with a series of notches corresponding in number to the circular cutters. The latter enter the said notches to effect the cutting of the oats at the point of contact with the said plate.
Mr. David E. Lupold, of Driftwood, Pa., has devised a portable fence which has panels made of rails with tapering ends and extending only to the center of the posts. Said panels alternate with other
panels in which the rails are extended to half the width of the posts, so as to fit on the posts of the first panels. The posts are driven into the ground and the pre connected by wires or ropes.
Mr. Robert Cowden, of New Richmond, Pa., has invented new Hay and Grain Unloader which embodies several in genious devices whereby the hay and grain may be unloaded quickly and conveniently and without being scattered or wasted.
In order to protect the udder of a cow from the dirt of a stable, and to keep it warm during cold weather, so as to in crease the free flow of milk, Mr. Marshall R. Dowlin, of North Adams, Mass., has invented a Protector, which consists of a pouch made of leather and provided with straps so that it may be secured to the udder.

An improved Cotton Chopper has been patented by Mr. Sampson N. Camp, of Forksville, La. In the frame be tween the plows is a rimless wheel, to the spokes of which are attached cups, which cover the plants that are to be lef for a stand, and protect them from the soil thrown by the plows.

Mr. James Higgins, of Westfield, N. J., has also devised a new Cultivator. In this machine, by pressing a rod and operating a lever the plows may be raised from the ground or forced down to enter more deeply, as desired. The middle beam, or any desired number of the beams, may be detached as circumstances may re guire.
A new Reciprocating Churn, de vised by Mr. Thos. J. Murphy, of Busti, Iowa, has two dashers connected to an oscillating arm on each side of its fulcrum or pivot. The churn body is divided intotwo compartments by a vertical partition which has slots formed through it to allow the milk to pass freely it to allow the milk to pass freely
from one chamber to the other. from one chamber to the other.
Many other ingenious devices are Many other ingenious devices are
added, improving the general effiadded, improving the
ciency of the machine.
ciency of the machine.
A new Cultivator, devised by Mr. Reuben H. Slifer, of Holden, Mo. is so constructed that the whiffle trees cannot drop to the ground to injure or break the plants; that it may be adjusted to work to any depth; that the plow beams may have sufficient play to be properly guided, or be raised out of contact with the ground in moving the ma chine from place to place. It is well suited for farm use.

Testing Tissues, etc.

We are indebted to the Textile Manufacturer for the following extract from the Guide Practique pour l'essai des Matieres Industrielles, etc.
ascertainimg amount of dressing.
In order to ascertain the amount of dressing and other matters contained in tissues, the authorities in French naval matters and railway companies submit a sample to two prolonged macerations, one in tepid water, the other in boiling soda lessive, under the following conditions:

1. Measure the sample, and withdraw all threads which might ravel out in the maceration and other processes, and thus interfere with the weight and consequent result. Avoid testing too small samples: a piece half a yard long will sufflce, and will not require large apparatus for the testing; if it be of the whole width of the stuff, of course there is no fear of lateral unraveling, but the ends must be carefully looked to.
2. Dry the sample completely in a stove heated to about 70° centigrade, or, in the absence of a stove, in a closed sand bath, or, still better, in a closed box containing chloride of calcium. Care must, however, be taken that the sample be not scorched. Then fold the piece quickly to get it into the balance, and weigh it immediately, while hot, as. being very hygroscopical, it absorbs humidity from the air, and thus soon gets an increase of weight that must not be disre garded.

To ascertain the amount of dressing macerate the sample for eight hours in a bath at $50^{\circ} \mathrm{C}$., rain water being preferable, the water to be 18 or 20 times the weight of the piece of stuff. The bath must not be allowed to diminish, sufficient water at the same temperature being added every hour, or oftener, to keep up the same quantity.
4. After the above maceration each sample must be rinsed in ordinary or rain water in an earthen vessel, without wringing, and taking heed that no threads escape. Then dry immediately and weigh without delay, as described above; the difference between the present and the previous weighings will give the amount of the dressing, dissolved or detached. In naval and railway contracts, difference allowed is 2.5 per cent, which represents the inevitable loss due to the matters which form part of the yarn itself. If the difference be greater, there has been artifficial dressing or insufficient preparation, the yarn has been soiled by matters soluble in tepid water. The following method deter. mines the other matters separated:
5. To find then the amount of matters which the original lessivation had failed to eliminate, the samples are boiled for six hours in soda solution, marking from 3° to 5° of the alkalimeter; that is to say, about 3 to 5 grammes of soda per liter of water. The soda employed is common caustic soda, costing little more than 1 s . 8d. per pound. The same pre cautions as mentioned above, and even greater, must be taken to keep the bath replenished, or the alkaline solution will become too strong and affect the tissue. After the maceration is completed, the rinsing, drying, and weighing must be carried out with all the precautions noted above. The difference between the third result and the second is the measure of the deficiency of the original lessivation.
test of resistance of tissues and cordage
The test of resistance of tissues and cordage shows the nature of the yarn and the quantity of matters contained therein by the following triple method:
a. The weight of the tissue per square yard is taken after the samples have been well dried in the stove or in the sun.
b. The number of threadsin warp and weft is ascertained by the ordinary thread counter of a quarter-inch field.
c. The resistance to traction of either tissues or cordage is measured by means of an apparatus which has two jaws, between which the tissue or cord is fixed, one jaw being stationary and the other connected with a lever, which is loaded until the sample breaks. In France the apparatus used is the dynamometer of Perreaux, which costs about £8. Fór tissues the trials are made with bảnds sixteen inches long.and two inches wide, one cut lengthwise and another crosswise of the stuff

REQUIREMENTS OF THE NAVY, ETC.
The following are the conditions required by the navy and public offices for the following principal tissues:

After experimenting on samples well dried at a tempera ture of about $30^{\circ} \mathrm{C}$., the same should be repeated with others damped with water, which, of course, generally offer greater resistance than dried samples.
testing fibers.
With respect to fibers, there is the double question of acual resistance and of durability, and there is of ten a difference of opinion respecting their fitness for certain purposes; some,for instance, as jute and phormium tenax, are definitely objected to in tissues of first quality; but all are agreed that tissues and cordage should always be of one kind (with ex-
ceptions), for the reason that, not being of the same elastic- which is to be used in making the cream, ice, or sauce to be ity and texture, the tissue will be less durable, and it is very flavored. But as this is rather wasteful, and the vanilla is difficult to distinguish flax, hemp, and jute by eyesight.

VETILLARD's method.
A great many methods have been proposed, but the best A great many methods have been proposed, but the best delicate, and requiring an excellent microscope, enlarging 120 times. The object being a piece of the fiber, colored according to its nature by means of two solutions: one of iodine, dissolved in a solution of iodide of potassium; the other, glycerin, mixed with sulphuric acid, and the process is as follows:
a. From the tissue, perfectly washed, lessivated, and
cleared of all impurities, threads are drawn from warp and cleared of all impurities, threads are drawn from warp and weft, and are observed separately.
b. Dip the thread in the iodic liquid, and dry it with piece of linen, or, better still, white blotting or filtering paper.
c. Lay it on a piece of glass, such as is used for microsco pic observation, and divide and spread out the flbers with the aid of the point of a needle.
d. Place another glass on the fibers, set the whole in the microscope, and then introduce a single drop of the sulphuric solution between the two pieces of glass, and observe the color which the fibers assume when the acid touches them: flax turns blue, mixed more or less with yellow; hemp, green, mixed with gray; jute and phormium, yellow China grass, gray; flat-rib, of gray-blue color. With a little practice of this method it is easy to see the difference between jute and phormium on the one hand, and fiax and hemp on the other, which is of itself of great importance when there is a question of adulteration; but it is very diff cult todistinguish jute from phormium and flax from hemp, as, according to the manner in which they have been prepared, they assume each other's tints, or so nearly as to deceive the eye. By means of nitric acid, in which the fibers are steeped, the distinction between flax and hemp and jute and phormium is clearly shown, the former not being af fected at all, while the latter takes a flne red tint.
testing mixed silk and wool.
If a piece of tissue of mixed wool and silk is plunged in hydrochloric acid, the silk is soon dissolved, while the wool remains, so that by careful weighing before and after the operation, the proportion of the two fibers is easily ascer tained.

COTTON IN wool.
Finally, to ascertain if a woolen fabric contain cotton, reat it with sulphite of sodium, and all the wool will be dissolved, leaving the cotton untouched.

TEST FOR INDIGO.

A good test for indigo is supplied by sulphuric acid, mixed with its own weight of water. Steep a dyed specimen in the mixture for five minutes, wash well and dry in the open air; if nothing but indigo have been used, the color will be unaffected.

Vanilla.

Indigenous to Eastern Mexico, vanilla has been gradually diffused by cultivation through the adjoining countries, and is now grown also in Java and other islands of favorable climate. It is an orchidaceous plant with a trailing stem not unlike that of the common ivy, and, attaching itself to any tree standing near, it rises to the height of eighteen or twenty feet. The fiowers are of a greenish-yellow color mixed with white, and the fruit or capsule, the part for which the plant is cultivated, is from three to eight inches long, of a yellow color when gathered, but gradually turning to a brownish black. The vanilla of commerce has been ascribed to a number of species of the plant, but it is now generally admitted that Vanilla planifolia furnishes the most of our supply.
The fruit of the vanilla, or vanilla " bean," as it is usually called, is, when fresh, of the thickness of the little finger, and is fleshy, smooth, and firm, but in drying it contracts to flattened cylinders from three tenths to four tenths of an inch wide. The surface is finely furrowed lengthwise, shining and unctuous. The pod contains a multitude of minute, black seeds, imbedded in an aromatic pulp.
Vanilla is principally gathered by the native Indians, who sell it to the whites, the latter preparing it for market. In this process it is spread out to dry in the sun for several hours, and then wrapped in woolen cloths to "sweat." Like pepper, it undergoes its principal change of color and flavor during this operation, and is finally dried by exposing it to the sun for a day or two. There are several varieties of vanilla, differing in excellence and price, the long beans being preferable to the short kinds. The best come from Mexico.

The fragrance of vanilla is not due to an otto, but to a crystalline substance found in the fruit and known as vanillin. Vanilla serves the double purpose of perfume and flavor. While it lacks the quality necessary to make it acceptable for the former use in a pure state, it is largely employed in compounds, forming an excellent ingredient in sachet powders and scents for pomades, and a basis for some delightful handkerchief essences.
As a flavor, vanilla undoubtedly occupies the firstrank, and here is at its best when used pure and simple. The only problem connected with its culinary use is how to secure its delicious aroma without adding the bean, woody fiber and all, to the delicacies in which its presence is
coveted. The primitive mode is simply to boil a bit of the bean in some of the water or milk, as the case may be,
ssistance of the apothecary is usually called for, and he furnishes, in response, a liquid extrac tues of the bean
So much has been written about the preparation of this ex tract, and so many formulæ for it published, that one would think that its manufacture was attended with many per plexities. This is not the case, however, so far as the ex perience of the writer is concerned. Everybody, at least every apothecary, knows that water and alcohol are the two almost universal solvents, and that a° mixture of the two erves to extract all the virtues of most roots, barks, leaves and flowers.

Fruits are no exception to the rule, and the vanilla fruit readily yields up its aromatic constituents to diluted alcohol Applying, then, the principles on which the apothecary prepares his tinctures in general, we may easily construct a formula for the tincture, or, as it is commonly called, vanilla extract: Take vanilla beans, one avoirdupois ounce; refined sugar, one avoirdupois ounce; alcohol, 95 per cent, eight fluid ounces; water, eight fluid ounces.

Beat the beans to a coarse powder in a mortar with the sugar, macerate them in the mixed alcohol and water for a week, shaking frequently, and finally strain the lifnid through cotton cloth, using pressure, and adding enough diluted alcohol through the strainer to bring the finished product to the measure of one pint. The sugar is added merely to aid in dividing the vanilla.

If I felt myself called upon to imitate the example of cer tain foreign writers who give recipes for handkerchief ex tracts by the keg and cologne water by the barrel, it might be necessary to revise my formula to make it workable, bu "small dealers" will have no difficulty with it as it is, ex cept in regard to its costliness. With vanilla beans at the present price ($\$ 14$ to $\$ 16$ per lb. wholesale), the extrac can be sold at, say, $\$ 2$ per pint, and yield such a profit as the retail druggist must usually demand; but when the price of the beans advances, as it sometimes does, to more than double this figure, it is almost impossible to sell it to advantage.
As every one in the trade knows, vanilla extract is fre quently adulterated with a mixture of tonka essence. The flavor of the latter somewhat resembles that of vanilla, bu is much inferior in every respect.-J. H. S., in Boston Jour nal of Chemistry

Astronomical Notes.

Penn Yan, N. Y., Saturday, February 2, 1878. The following calculations are adapted to the latitude of New York city, and are expressed in true or clock time, being for the date given in the caption when not otherwise stated.

remarks.
The sun is moving northward rapidly, changing in decli nation $44^{\prime \prime}$ per hour. Day's length, $10 \mathrm{~h} .9 \mathrm{~m} ., 53 \mathrm{~m}$. longer than the shortest. Duration of twilight, 1 h .33 m. , which is slowly shortening, reaching the winter minimum March 4. Mercury attains his greatest western elongation February 2. He can only be seen at or near the time of greatest elongation, as he then is at his greatest angular distance from the sun. Taking mean values, we find Mercury is brightest three days after greatest elongation west, and three days before greatest elongation east, or between greatest elongation and superior conjunction. But cases may and do arise when the time of greatest brilliancy falls before greatest elongation west and after greatest elongation east, or between greatest elongation and inferior conjunction, which fact, so far as I know, is not mentioned in any treatise on astronomy. To cause the point of greatest brilliancy to occur, as last mentioned, the earth must be at or near perihelion, and Mercury at greatest elongation, and at or near aphelion. This will be the case when Mercury is at aphelion and greatest elongation, about January 1. The elonga tion of Mercury, which occurs this day, happens to fall within the limits of this case. The earth being only 33 days from perihelion, and Mercury 16 days from aphelion, the time of greatest brilliancy occurs a few hours before greatest elongation west. Jupiter rises 1 h .6 m . before the Sun, and $7^{\circ} 9^{\prime}$ south of the sunrise point. Saturn's rings disappear February 6; the sun passing below their plane, and the earth remaining above. The earth will not reach their plane until March 1, when we shall see the southern surface, the rings reappearing as slowly as they disappeared. Algol is at minimum brilliancy February 3, 5 h .25 m . morning; February 6, 2 h .14 m . morning; and February $8,11 \mathrm{~h} .3 \mathrm{~m}$. evening. θ Ceti (Mira) is fast disappearing, becoming invisible during the latter part of February. Mira in meridian February 2, 5 h .21 m .17 sec . evening.

New Mechanical Invontions.

An ingenious Sounding Machine, by which the depth of water is quickly and accuratel shown, has been invented by Mr. F. E. Schrom, of Whitewater, Wis. There is a endless graduated indicating belt, combined with the reel that carries the sounding line, to which a relatively low velocity is imparted in which a relatively low velocity is imparted in such a manner that equal lengths of the
line, when winding upon or unwinding from the reel, are represented by much shorter distances moved by any point on the belt. The graduations on the latter are numbered to in dicate fathoms and quarter fathoms on the line.

Mr. Daniel H. Merritt, of Marquette, Mich. has patented a new Friction Gearing, the improvement in which consists in making a triangular or V-shaped groove between the bases of the teeth, at a more acute angle than the latter. The teeth or ribs travel faster a the periphery than at the bases, and are con sequently liable to the greatest wear at the outer portion of their surface. By the present arrangement, it is claimed that as the ribs wear away they will maintain thei original form.
Mr. Lorenzo Meeker, of Oswego, N. Y. has invented a new Lifting Jack by which a heavy weight may be lifted either from the ground or from the top of the device. There is a combination of a vertically sliding bar, a peculiarly constructed clutching device, and a lever fulcrumed on the tubular standard, by which the vertically sliding bar is guided.
In a new Car Wheel patented by Messrs. H. Sciheibel, Jr., George M. Seeleys and John Schneider, of Bridgeport, Conn., annular elas tic packing is interposed between the cylindri cal faces of the tire and the web, the object being to absorb the jar, deaden the sound, and diminish the force of concussion, thus afford ing a better riding wheel and reducing the wear on the tire.
Mr. L. Morgenthau, of New York city, has devised a new Paper-feeding Machine, which consists of a vertically reciprocating and oscil lating casing or receptacle, that is arranged with a narrow longitudinal slot at the curved
bottom, and filled with some adhesive sub bottom, and filled with some adhesive sub-
stance for the purpose of taking up and lifting a sheet of material at the down stroke of the receptacle and carrying it by the up stroke and by contact with a top stop screw to the feed rolls, so as to be taken up by the same. Mr. T. A. Blake, of New Haven, Conn. has recently devised a new Ore Crusher, the object being to secure a regular feed and the avoidance of sudden strains upon the fram or the rods of the machine. The materials to be crushed are broken to uniform size and
placed in a hopper. A sliding cover is then placed in a hopper. A sliding cover is then
adjusted to supply the required material to the rolls. The rotation of a roll beneath the hop per causes an even supply of material to fall from the latter to the crushing rolls, where it is reduced to a uniform powder, either coarse or flne, as may be desired. New devices are provided, so that under sudden strain the rolls are permitted to yield without the necessity of overcoming increased resistance.

Mr. Carl A. Schumacher, of Walla Walla Washington Territory, has devised a new Sewing Machine Shuttle, one advantage of which is that the tension spring and its fastening are permanently attached to the shuttle case, and consequently none of the parts are likely to become mislaid or lost.
A new Cross Tie for railways devised by Mr. David Horrie, of Keokuk, Iowa, consists of a cast or wrought iron tie made of a broad bearing surface, center bottom rib, and with lateral top flanges, that bind on the base of the rails and flrmly secure the same. With this are combined straight screw bolts, having spiked heads that pass in grooves of the tie acrosis the bottom of the rails.
Mr. Clark P. Hayes, of Brooklyn, N. Y. has iavented a Machine for Cutting and Grind ing Logwood, which is intended to take the place of the separate machines now used for that purpose. It works rapidly and separates the fine particles from the coarse chips, which last are conducted away and reground.
Mr. Elson Towns, of Cisne, Ill., has devised a new Governor for Steam Engines, which is a new Governor for Steam Engines, which is
so contrived that the relation of the centrif so contrived that the relation of the centrif-
ugal force of the rotating balls to the resistance changes as the balls rise or fall; and the relation of the motion of the balls to that of the moving sleeve is.also variable, so that the governor is most sensitive when sensitiveness is required.

Business and 梁ersonal.

The Chargefor Insertion under this head is One Dollar a line for each insertion.

A Rare Opportunity:-A new Factory, with Engine Boiler, Shafting, etc.; in a splendid location; suitable
for manufacturing; will be sold for less than $3 /$ of its riginal cost, or will be leased on easy terms. For par

Alcott, Mt. Holly, N. J., pledges power to equal an

I want some patented article in Wood or Iron to man
Manufacturers of Water Motors address Wm . Mor
use, 1,023 Delaware Ave., Buffalo, N. Y
Everybody their own Nickel Plater; no battery. Send 3c. stainip for particul
Tomplins Co., $\mathrm{N} . \mathrm{Y}$.
For Sale. - Machinery and Compositions of all kinds Machine Cut Appass to J. H., P. O. Box 942, N. Y. city. Machine Cut Rrass Gear Wheels for Models, etc.
Canadian Patent For Sale.-Mey's Dryer for Grain, Malt, etc., has been in practical use for several years in
uffalo, N. X. Address F. H. C. Mey, Buffilo, N. ष. Galvanized Iron Cornice Machines.-The most Im-
proved, Straight and Circular. Prices reduced: Calvin proved, Straight and Circular. Prices reduced. Calvin
Carr, Cleveland, 0 ., and Hewes Machine Works, Newark N. J.
For a 15 in. Swing Lathe having 15% in. hole through Head Spindle, somethin
pany, Providence, R. I.
For New Ilustrated Catalogue of Foot Lathes, Scroll Faws, Small Steam Engines and Amateur's Tools, sen stamp to Chase \& Woodman, Newark, N. J. Carpenters.- Your Saws will cut straight by using my Carpenters.- Your Saws will cut straight by using my
Jointer; the teeth will all be of an equal length. Sample by mail, 25 cts.; $\$ 2$ per doz. E. Roth, New Oxford, $\mathbf{P a}$ want agents.
For the best and most practicable Brick Making Ma For power and durability, Alcott's Water Wheel, M For power
Hollw, N. J..
2d Hand Iron Planer built by Smith of Salem. Plane 13 Cornice Brakes. J. M. Robinson \& Co., Cincinnati, 0 Noise-Quieting Nozzles for Locomotives, Steamboats tc. T. Shaw, 915 Ridge Ave., Philadelphia, Pa
Bolt Forging Mach. \& Power Hammers a specialty.
end for circulars. Forsaith \& Co., Manchester, N. H. For Town \& Village nse, Comb'd Hand Fire Engine \&
Hose Carriage, $\$ 850$. Forsaith \& Co., Manchester, N. H. John T. Noye \& Son, Buffalo, N. Y., are Manufactur-
ers of Burr Mill Stones and Flour Mill Machinery of all inds, and dealers in Dufour \& Co.'s Bolting Cloth. end for large illustrated catalogue.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J Solid Emery Vulcanite Wheels-The Solid Original
Emerv Wheel oother kinds imitations and inferior. Standard Belting, Packing, and Hose. Buy that only.
The bent if the cheapest. New York Belting and Pack-
Steel Castings from one lb. to flve thousand lbs. In aluable for strength and durability.
For itssburg Steel Casting Co.. Pittsburgh, Pa.
For Best Presses, Dies, and Fruit Can Tools, Bliss Hydravic Pre Hydraulic Presses and Jacks, new and second hand
Lathesand Machinery for Polishing and Buffing metals E. Lyon \& Co., 470 Grand St., N. Y.

Shaw's Mercury Gauges, U. S. Standard of Pressure Ne.
New Machinery at Second-hand Prices.-Two Brow
sharp's No. 3 Screw Machines; Five Prentice Han and Foot Lathes; Six Boiler Feed Pumps ; detailed lis Friction Clutches warranted to save Rolling Mill Ma chinery from breaking. Also Hoisting Machines and For Sale-An Elevator with Carriage, suitable for Hotel. Apply to Morgan \& Co., 154 South 4th St., Philla Hotel. Appl.
delphia, Pa.
Polighing Supplies of all kinds. Walrus Leather
Wheels, ail sizes and shapes. Greene. Tweed \& Co, N. Y . For Solid Wronght Iron Beams, etc., see advertise ment. Address Union Iron Mills, Pittsburgh, Pa., fo thograph, etc.
Felt of every description for Manufacturers' purposes,
pecially adapted for Polishing, can be furnished in any especially adapted for Polishing, can be furnished in any
thickness, fize, or shape. Tingue, House \& Co., Manu-
facturers, salesroom, thickness, size, or shape. Tingue, House \& Co., Manu
facturers. Salesroom, 69 Duane St., N. Y. Factory at
Glenville, Conn. Ice Machines. Clayton \& Cook, Daretown, N. J. Improved Wood-working Machinery made by Walke Skinner Portable Engine Improved, 2 1-2 to 10 H. P. dinner \& Wood, Erre, Pa.
Vertical Scientiffc Grain Mills. A.W.Straub \& Co.,Phila Fine Tajps and Dies for Jeweler's, Dentist's, and Ma
chinist's use, in cases. Pratt \& Whitney, Hartford, Ct Weldess Cold-drawn Steel Boiler and Hydrauli ubes': Leng \& Ogden. 212 Pearl St., N. Y.
Safety Linen Hose for factories, hotels, and stores, a
lowest rates. Greene, Tweed \& Co., 18 Park Place, N. $\overline{\text { X }}$ owest rate8. Greene, Tweed \& Co., 18 Park Place, N.Y.
Diamond Tools. J. Dickinson, 64 Nassau St, N. Y. The best Turbine Water Wheel in use. Alcott, M Holly, N. J.
Manufacturers should try the pure natural Lubricating
oil. Produced and prepared by Geo. Allen, 1sth street,
Franklin, Pa. It does not gum or chill in cold weather ranklin, Pa.. It does not gum or chill in cold weather
and wears as well as lard oil. Price by the barrel 30 and wears as well as lard oil. Price by the barrel
cents per gallon. Packages of 10 gallons sent on recelp
of $\$ 8.75$

of 83.75 .

More than twelve thousand crank shafts made by
Chester Steel Castings ${ }^{\text {Co. now running; } 8 \text { years' constant }}$ Chester steel Castings Co. now running; 8 years' constan
use proves themstronger and more durable than wrough

NEW BOOKS AND PUBLICATIONS.
Upland Game Birds and Water Fowl of
the United States. By A. Pope, Jr. THE UNITED States. By A. Pope, Jo
Published by Scribner, Armstrong \& Co 743 and 745 Broadway, New York city. We have received the first part of one of the most elegant ornithological works that has been published
since Audubon produced his colossal volumes. The since Audubon produced his colossal volumes. The
idea is to present a series of exact illustrations of many of the principal game birds and water fowl of the United States, drawn from and colored to the life by an artist sportsman who has studied them for years, and whose ability as a pa nter in water colors is of high or-
der. The sketches, which are reproduced in fac-simile der. The sketches, which are reproduced in fac-simile
in the highest style of chromo-lithographic art, represent the male and female of each variety of birds, and Baird's, Cone's, andother standard ornithological books The entire work is beingpublishedin the mosts umptuous manner, and when complete will form one of the andsomest productions of a publishing house already enowned for the artistic excellence of what it puts forth. The part before us relates to the American nipe and the Green Winged Teal. The four following cock, mallard duck, quail, black duck, ruffled grouse bue billed duck, prairie chicken, and red headed duck. The w
part.

Ames' Compendivm of Practical and Or-
namental Penmanship. By Daniel T . Amental Penmansiri. By Daniel T.
Ames. Published by A. J. Bicknell \&
Co., 27 Warren St., New York. Price, cloth, $\$ 5$.
This is a large quarto volume containing 48 plate nely executed by photo-lithography, and placing be ore the penman a great variety of models for imitation, anging from simple elements of letter formation toth most elaborate engrossing. Twenty ornamental alpha
bets (manyentirely new) are embodied, besides numer ous designsfor borders, monograms, and the varions formal documents, such as resolutions, testimonials, etc., in preparing which the penman's skill fildsits cru ial test. The author states that it is the most com plete handbook of ornamental
is very handsomely published.
Palliser's American Cottage Homes.
Published by A. J. Bicknell \& Co., 27 Warren St., New York. Price \$5.
The above-named publishing house is doing valuable service in its frequent publication of copiously illas trated works containing designs for dwellings which are not only moderate in price but in accordance with a
constantly improving popular artistic taste. American village architecture has long been remarkable for lack of beauty, chiefly perhaps on account of the rapidity with which new towns spring up in this country, and the necessity of building at low cost. Now that the
best architects do not think the planning of a workbest architects do not think the planning of a work-
man's cottage unworthy of their skill, we may look for man's cottage unworthy of their skill, we may look for
the application of better principles both in construction the application of better principles both in construction
and exterior appearance. The present work is a notable instance of what may be done toward adaptin really tasteful and new designs to the exigencies of moderate outlay. Here are 50 designs, each giving the necessary plans, elevations,and perspectives of cottages,
none costing more than $\$ 3,500$ to erect complete, and none costing more than $\$ 3,500$ to erect complete, and
rangmg from that figure down to as low as $\$ 325$ for ranging from that figure down to as low as $\$ 325$ for a
very neat 2 room $13 /$ story dwelling. All are tasteful, many picturesque and elegant. They are intended fo be said of the ineffectualattempts to imitate French cit architecture on a reduced scale, which of late year many architects have made, in planning country homes Full forms of speciffcations and agreements are given,
so that the reader has only to select his design and so that the reader has only to select his design and
make a contract with a builder to have it constructed.

Practical Studies in Lineal Drawing Designed and engraved by E. Becker
Price 75 cents. For sale by the author
Price 140, Stapleton, Staten Istand, N. Y
This is a portfolio of six finely engraved plates, exhib onic, Doric, Corinthian, and Composite ordersof arch onc, Doric, Corinthian, and Composite ordersor arch tecture. Problems and solutions and
tions are engraved upon the plates.

(1) C. L. asks: Is there any way to pre vent a lignum vite block from checking? I have a
piece that I use for cutting stencil plates on, and it has pegen to check quite badly stencil plates on, and it has without injuring the wood. A. Oil would have a tend ency to stop it if frequiently applied. A coat of parafin would close the pores and prevent the action of the air upon the fibers. It might be bound with an iron ferule.
(2) F. B. asks what papier mache is composed of for making ornaments, also how to mix it for casting. A. Itis a mixture of paperpulp and hot melt-
ed glue; the mixture is poured or casit while hot in moulds which may be made of plaster of Paris, and as soon as it sets by cooling is removed from the mould,
and allowed to dry by exposure to the air; and when dry it is varnished or polished, according to the degree

of fnish that is required

(3) S. A. H.•Writes: Please inform me bow screw taps.are hardened; those we have with the dies
are a reddish color, and stand quite well, but we canare a reddish color, and stand quite well, but we can
not make any that will stand atthat color. A. It may be that you harden at toohigh a heat. \&prinkle pul verized yellow prussiate of potash over your taps. When
they are heated to a dull red, again place them in the fire and increase the heat for a few moments until the prussiate is thoroughly fused or fluxed over the sur-
face, and then immediately plunge and shake them (so that they will chill quickly) into and under clear col water: When thoroughly cool, the tap or taps are to be
emoved from the water, then cleaned, polished, diled, and tempered.
tists' oil colors , collapsible tubes made used to put artists' oil colors up in' A. On very much the same
principle as lead pipes are made-the metal is heated and drawn (in dies) to the required shape by pressure. 1. I have a Daniell battery (zinc was cast from chain
pump buttons). It will not work sometimes pump buttons). It will not work sometimes for a long
time, and then very weak. I would like to ime, and then very weak. I would like to know the
reason? A. It is likely that your battery zinc contains reason? A. It is likely that your battery zinc contains
lead. 2. Can the sulphate of copper solution be made so strong as to impair the action of the batters? A. Not in Daniell's form of battery.
(4) J. L. P. says: In the Scientific AmericAN of Decemher 15, 1877, under "Notes and Queries;"
is the following by H. R.H. (16): "What is the correct s the following by H. R. H. (16): "What is the correct
andwer to the following example? $714-714 \div(34-\cdot 034$ $\times \cdot 25$ of 6)." There were two answers given, 1554 and $71152942+$. In your answer you say the second solution is the correct one. I clajim the first (1554) to be the correct answer, and give my reasons below. A. The statement is ambiguous; it may be rendered in four
different ways, thus: 1 . (714--714) $-[(34-\cdot 034) \times 25$

 $[\cdot 714+[\cdot 34-(\cdot 034 \times \cdot 25 \times 6)]]=711 \cdot 529$. In the qnotienti, the decimals are carried out to only the third place.
(5) M. H. R. says: It is desired to deaden the floor in a schoolroom. The room is about 45×30,
the ceiling underneath is of $1 / 2$ inch boards. What the ceiling underneath is of $1 / 2$ inch boards. What Lay down two or three thicknesses of building paper under the floor plank.
(6) A. S. asks: How are blue photographic pictures madep A. First solution: Potassium ferrocy-
nide, 120 grains; water, 2 ozs. Second solution: Am nide, 120 grains; water, 2028 . Second solution: Am-mon-ferric citrate, 2 ozs.; water, 140 grains. Mix the
separately made solutions, fllter into a flat dish andfloat plain photographic paper on it for 3 or 4 minutes. Dry the paper in the dark and expose it to strong sunlight under the negative for 8 or 10 minutes. Wash the print in running water, dry, and mount. A little gam arabic in the bath is said to greatly improve the picture
(7) J. M. S. asks: What are the coloring matters used by confectioners-red, blue, yellow, and
reens A. Blue: Indigo powder, soluble indigo (sulph green A. Blue: Indigo powder, soluble indigo (sulph-
indigotic acid), Prussian blue. Yellow: Saffron, Turkey indigotic acid), Prussian blue. Yellow: Saffron, Turkey nd Persian yellow berries, quercitron, fustic, and muminous lakes of these. Mixtures of blue and yellow wood lake, madder lake. Carmine is often adulterated with vermillion (mercury sulphide); it should, if pure, dissolve without residue in strong aqua-ammonia.
(8) A. H. J. writes: Can you inform me ow I can obviate the following difficulty with my cook
tove? A thick, black, tarry substance almost contin ually oozes through the joints of the pipe and drips onto the stove and carpet, and has a strong, disagreeable odor. The draft is good; the wood ised is beech and maple, thoroughly seasoned. The pipe is nearly new and perfect, about 16 feet in length from stove to chimney, with only one elbow. The stove, with this excep-
tion, is an excellent one. A. The tarry substance you ion, is an excellent one. A. The tarry substance you tillation of wood, and consists principally of pyroligneous acid. Your stovepipe acts as a condeneing worm to a still or retort, such as is used in chemical manipulaions; infact, you are making pyrolignegus acid; but facture, we suge no interest or pleasure in this man facture, we suggest as a means of preventing it that ou connect your stove directly with a brick chimney,
(9) F. H. S. asks for a good indelible ink to use with stamps? A. Mix equal parts black oxide of manganese and hydrate of potash, heat to redness, and ub with an equal quantity of smooth white clay into a of manganese, 2 drachms: lampblack, 1 drachm; pow dered loap sugar, 4 drachms; rubbed into a paste with water. After stamping, dry the linen and wash well in water. Mix aniline red or rubine extra, 2 to 4 drachms alcohol and water, each 7 ozs.; glycerin, 15 ozs.; heat andrub together with a little tannic acid or sumac ex tract and alum water. For blue, nse soluble water blue
(aniline) dissolved in a sufficient quantity (about 150 (aniline) dissolved in a sufficient quantity (about 150 a similar manner be used for blackink.
(10) F. W. M. asks how.to hold Indiaink in solution like that prepared by Winser \& Newton?
A. The ingredients are digested for two hours at a hig temperature in a Papin's digester. A drop of clove oil temperature in a Papin's digester.
should be added and a little ox-gall.
(11) J. V. asks: What is the feeding prin ciple of the German students' lamp? A. The equilisome text-book on Natural Philosophy.
Will ordinary rubber bands answer for making a coat ing or cement by dissolving in bisulphide of carbon A. No; use gum rubber or caoutchouc.

1. What is the cheapest manufactur 1. By is the cheapest manufacture of ammonia A. By decomposing the solution of the sulphate or car bonate obtained from the liquor of gas works, by
aked lime aided by heat. 2. About what is the cost of manufacture per lb.9 A. If you refer to aqna or
liquorof ammonia, crude, 10 cents; chemically pure, 75 iquorof ammonia, crude, 10 cents; chemically pure, 75 cents.
(12)
(12) D. S. asks: Is there any method of keeping the worm out of white hickory' ${ }^{\text {A }}$. The application of a dilute solution of tannin mixed with abou o some extent.
(13) J. S. asks: Is it practicable to manu acture ice by utllizing the cold given out by the expanYes, but the processes involving ether, anhydrous sul phurous oxide and other chemicals are more economipharo
cal.
(14) S. S. asks: What can be added to comnon black writing ink to make it a copying ink? A. A
