believe, not generally known. The low value of silver pre:
vehind as a binding medium. Mr. Prime in the report
vents any such proceedings as in the case of gold, as the
before us says that the product seemed too friable to stand vents any such proceedings as in the case of gold, as the amount which could safely be abstracted will not pay for the trouble of doing it. Consequently all silver counterfeits are true imitations, and there is hardly a date of dollar, half dollar, or quarter which has not been copied with remarkable accuracy. The counterfeiter either makes a mould in plaster from the real coin and casts from it, or he stamps his imitation in dies. As this last process is the same as is in use in the mints, the counterfeits thus produced are more difficult to detect, because, besides being more accurately finished, the compression which the alloy receives brings it nearer to standard weight. A large number of counterfeit silver coins are made chiefly of type metal. A very dangerous half dolare made chiefly of type metal. A very dangerous al worth
lar is composed of silver, copper, and zinc, and is worth lar is composed of silver, copper, and zinc, and is worth
about 17 cents. It is from 7 to 10 grains too light. Spurious half dollars have appeared which constantly deceive bank tellers and other experts because they are of full weight. They are made of a compound similar to German silver, and are so well plated with genuine silver that the acid does not affect them. They are, however, too thick, and the gauge, as usual where the balance fails, shows the fact. Counterfeits of the quarter dollar, though very plenty, are less dangerous than those of larger pieces. They are composed of antimony, tin, and lead, and are both too light and too thick, although they have a good ring. A peculiar composition has been employed, to $\begin{gathered}\text { hich powdered glass is added to give }\end{gathered}$ a clear sound; but this is but a clumsy expedient, as the coin is far below proper weight, a fact easily appreciable by mere handling.

It is a difficult matter to lay down any general rules for detecting counterfeit coins, as it will be seen from the foregoing that the closest ocular inspection may be wholly at fault. One of the most ingenious little mechanical contrivances for both measuring and weighing coin, and which has, we are informed, been adopted in the United States mints and Treasury and many banks, will be found illustrated in our last issue. In general the milling on the edge of the counterfeit coin is always poorly executed as compared with the genuine; but wear of the latter often renders the with the genuine; but wear
distinction difficult to draw.
Another point worth remembering is that absence of clear tone in a coin is not necessarily proof of its falsity, because it may and does happen that a crack or flaw is made in the metal during the rolling, and this, just as in a bell, will of course destroy the vibrations and make the sound dull and flat.

ARTIFICIAL FUEL.

It is well known that owing to the brittleness of anthracite there is a large waste in mining it. The comminuted material being too fine to be merchantable has accumulated in immense heaps near the mines, cumbering the ground and at the same time standing as tangible evidence of the necessity of some means for its utilization. Processes for this purpose have not been wanting, and when they failed as many have it was frequently because the fuel in the heat of the furnace lost its form and choked up the grates, but more commonly because the cost of manufacture was such that competition could not be made with the lump coal. Inventors of artificial fuels based on anthracite culms too often overlook the fact that the success of their process necessarily includes an increase in value of the culm in proportion as the demand for it is augmented. Says Mr. Frederick Prime, in his report as a judge at the Centennial Exposition on " coals:" "As quickly as this value touches a certain point it then becomes impossible for the artificial fuels to compete with the lump anthracite. Nor can they do this even when the culm is obtained for a mere song when the price of anthracite is very low. Consequently it is very probable that the manufacture of artificial fuels will for many years be limited, both as to quality and the purposes for which they are used."
The principal processes introduced of late years are the Loiseau, the Newton, and the Endres. The first is the invention of Mr. E. F. Loiseau, and has achieved remarkable success both in this country and abroad. It is claimed to be the first ever used to make artificial fuel for domestic employment by mechanical processes on a commercial scale. We illustrated Mr. Loiseau's ingenious train of machinery some four years ago, and its operation can be briefly summed up. The anthracite dust, after being dumped on a covered platform, is received on a screen, which after screening the coal delivers it to an elevator which raises and discharges it into a bin. Meantime dry potter's clay is suitably ground, and in a separate tank a liquid mixture is made of lime, rye flour, and water; 95 per cent of coal dust and 5 per cent of clay are mechanically taken from the bins, delivered under a chain elevator, and there sprinkled through a perforated pipe with the liquid composition. The compound is conducted between rollers, in which are cavities which mould it in egg shaped form, thence passes to a drying oven, through which it passes five times to and fro on a belt, thence the lumps are carried through a water proofing composition, and finally they pass through a drying oven, emerging perfectly dried and ready for the market. This fuel burns well, retains its form, and leaves as a residuum the clay and any other solid impurities besides the ash.
Newton's fuel has not yet been produced on a manufacturing scale. It is composed of coal dust and coal tar, placed in a retort, which distills out the volatile products, the residue of the coal tar, some 2.5 per cent, remaining
much handling without particles of the coal wearing off from the lumps, but it burns freely, without smoke or sulphurous fumes, and if left untouched retains its form until consumed. It
leaves less ash.
The Endres
The Endres process is worked by the Anthracite Fuel company of Rondout, in this State. It uses 100 parts anthracite culm to 10 parts "fuel pitch" or bitumen of coal tar. This pitch is previously prepared by passage through crushing rollers, and it is mechanically combined with the coal in exact proportions. The mixture is then heated, the pitch melting, and it is afterward moulded under heavy pressure into bricks weighing about 15 pounds each. This fuel Mr. Prime states to be a steaming coal of uniformly high average. During 1876 it was supplied to six railroads in New York and Connecticut, eliciting favorable reports
from all. On the Hudson River Railroad the economy in its favor was estimated at about 15 per cent.

SILVER IN ART.

In a short but interesting article on this subject in the International Reviee, Mr. Edwin C. Taylor has described a few of the more novel methods of ornamentation of silver that have not yet become generally familiar. And, by the way, the author expresses it as his opinion that in view of
the fact that the yield of this metal in our own country is destined, for years to come, to be greatly in excess of the natural demand, it would be far better to divert it to the uses of art than to make it the means of striking a blow at our national credit. In view of the late action of Congress, however, it would seem that our legislators are uot d
to regard metallurgy from an æsthetical standpoint.
Conspicuous among the newer methods of ornamentation of silver is that of inlaying with niello, somewhat after the manner of the Champlere enamel, and similar to the much admired Russian work at our Centennial Exhibition. The art of applying this enamel was for a long time regarded as a Russian secret, although the metallic_oxides, of which it is composed, were well known to our metallurgists, and it has lately been successfully employed by craftsmen of Paris and London. This valuable ornamental agent was developed in America only last year, and its use in connection with silver offers the greatest advantages, from the fact that it can be worked with equial facility in mass or in the most delicate lines. Niello, unlike the vitrified enamels used in Cloisonné ware, will bend with the body in which it is inserted, and is therefore not liable to destruction through fracture or abrasion. In connection with this very flexible composition, pure metals, such as copper, iron, and gold, are also inlaid by an ingenious process, so that it is possible to obtain a durable surface possessing the beautiful polychromatic
effects that were but lately produced only by supericial methods of decoration, such as electro-plating and oxidation. Another method of silver ornamentation, which has proved to be susceptible of rare delicacy of treatment, is that styled Appliqué work.
In this process each ornament is first separately wrought in the same manner as a piece of jewelry, laid upon the surface to be embellished, and held in place by ligatures of fine wire, while a careful blast from a blow-pipe directed upon it secures perfect fusion between it and the original body. In this way Japanese figures of birds, fishes, foliage, and Persian ornamentations of floral and other decorations may be admirably treated. By this process of applying raised ornament, too, another feature of decoration is introduced, which, until the current year, has never been known outside of the curious workshops of the jealous Japanese, into whose precincts the foot of the "barbarian" is never allowed to enter, nor his eye to peer.
The material use
The material used in this process may be call "Japanese alloy," and it is applied in the manner described in regard to raised ornaments of silver. This alloy is composed of certain metallic substances that are capable of receiving and retaining various shades of color, such as blue-black, gray, yellow, brown, violet, and vermilion, used separately or together, or mixed with gold. "The opportunities for metallic decoration which this wonderful and highly valuable compound affords are vast indeed, and render it easy to present the gorgeous plumage of birds, and all the beautiful
hues which the wealth of nature yields, in the durable form of metal objects." The discovery of this secret in metal lurgy is the result of a long series of patient experiments, and its development will be watched with great interest by those who are accustomed to follow the progress of American industrial art. It is said that the use of this alloy, yet in its infancy here, "is likely to result in the production of rarer and costlier art objects of silver than modern art has known, and the chryselephantine treasures of archaic times will doubtless be rivaled by the many-colored products of American workshops."
In conjunction with the various kinds of ornamentation, very peculiar and quaint effect is sometimes produced by leaving the entire surface of the object impressed with the dints of the hammer. This finish imparts an appearance not unlike that seen in the Chinese "crackle " pottery. Sometimes the objects are indented with an edged hammer horizontally, so that the lines appear like waves of water. And in connection with this, a very novel and pleasing effect is produced by the introduction of raised figures of fishes and marine plants.
In noting these novelties in connection with the develop-
ment of metallurgy in our country, it is gratifying to feel that we possess artisans of such skill that no foreign secret
processes are beyond their power of grasping, and that our processes are beyond their power of grasping, and that our
people have the taste and the will to encourage their ef. forts.
formation of planetary rings and satellites.
According to the great nebular hypothesis of Laplace, the planets owe their formation to the abandonment of zones of vapors which the primitive solar nebula left at the limits of its atmosphere, when, through the effect of cooling and contraction, the velocity of rotation of the mass progressively increased. These rings of vaporous matter ultimately condensed into separate nuclei, constituting the planets, which consequently at the beginning had the same constitution as the solar nebula. "In this state," says Laplace " the planets perfectlyresembled the sun in nebulous condition," and they became rings and satellites circulating around their primary in the same direction as the movement of rotation of the latter, and turning on their own axis also in similar direction. All bodies which circulate around a planet having under this hypothesis been similarly formed by zones which its atmosphere has successively abandoned, and its movement of rotation having become more and more rapid, the duration of this movement should be less than that of the revolution of these different bodies, as in the case of the sun as compared with the planets. All this is confirmed by observaion."
This at the time when Laplace wrote was true. The movement of the moon, for example, is 28 times less considerable than that of the earth's rotation; the first satellite of Jupiter, nearest to the planet, revolves in $13 / 4$ days, and its novement is four times less rapid than the rotation of Jupiter, which occurs in 9 hours and 55 minutes. Mimas, the satellite of Saturn, having the shortest period of revolu tion, about 23 hours, moves in more than double the time required for the rotation of the primary, and even the nearest brilliant Saturnian ring turns about \% $\frac{1}{7}$ of a day less rapidly than the planet itself. All this accords with Laplace's aw.
The newly discovered satellites of Mars render the system of that planet analogous to that of Jupiter, Saturn, or Uranus. But the first satellite of Mars, the distance of which from the center is $2 \cdot 7$, or less than three times the radius of the planet, makes its siderial revolution in a period of about $71 / 2$ hours only, three times less rapidly than the rotation of the primary is accomplished.
M. Edouard Roche has recently published an essay wheren he advances a new theory to account for this remarkable anomaly. He considers that during the contraction of a nebula there is not merely, as Laplace suggests, an abandonment of exterior rings, condensing at the equa torial limit where the central attraction equilibrates the centrifugal force. The portion of the nebula, he says, which becomes free at each new stage of cooling comes from a fluid layer which extends to the poles, and which is diverted on both sides, to meet finally outside by the equatorial line as by a sort of opening. It results that in flowing to the equator, one part of this nebulous matter arrives there with too low a velocity to allow of its circulating internally The result of this is, that instead of separating from the nebula to form exterior rings and later satellites analogous to those known, this matter, re-entering the atmosphere of the nebula, forms there interior rings, which, at first describing more or less elongated ellipses, end by being transformed into circular rings. One part of Saturn's rings appears to be due to this mode of formation, and the same .eory is advanced as accounting for the anomaly observed in the first satellite of Mars.

The Lighthouse Board.

The decease of the distinguished Professor Henry left a vacancy in the United States Lighthouse Board, which has lately been filled by the appointment of Professor Henry Morton. This gentleman is well known in the scientific world for his experimental researches and discoveries in connection with light and the appliances for its production. His appointment will give very great satisfaction.
As President of the Stevens Institute of Technology, Hoboken, N. J., he has conducted the affairs of that institution with judicious skill, and has evinced the possession of executive abilities of a high order. He was, in fact, the organizer of the institution, which under his auspices has come to be widely celebrated for excellence.
The lighthouse system of the United States is under the control of a board of seven persons, consisting of two naval officers, two army officers, two civilian scientists, and a naval secretary. The Secretary of the Treasury is the President of the Board and controls all its decisions. But we cannot doubt that the influence of Professor Morton will prove useful to the Board, by helping to renew its vigor, and perhaps by assisting to increase the luminosity of some of our lighthouses.

American Soclety of Engineers,

The tenth annual convention of the American Society of Civil Engineers will be held at Boston, beginning Tuesday, June 18, 1878. The list of topics to be considered is a long and interesting one, and the programme includes a number of excursions to points of professional interest in and about Boston. The meetings of the convention will be hel in ${ }^{\text {² }}$ the hall of the Massachusetts Institute of Technology.

A Long way
to Pasture.

- Mr. John M. Wilson, United States Consul at Hamburg, reports that the ports that the exportation of live stock from this country to Schleswig - Holstein, to be fat tened on the rich pastures of that country, bids fair to become a very lucrative business. At the suggestion of Deputy - Consul Moeller, a native of SchleswigHolstein, the grazers of that province sent a steamer to this city for a cargo of lean cattle which were pur chased at Chica go, and a few fattened animals for the English market. The latter numbered

Fig. 3.-NEW YORK ELEVATED RAILROAD AT THE BATTERY.

courses of red pine blocks, with intermediate spaces. The spaces are filled in partly with heated mastic asphalt, and then with coarse lime and gravel grout, flushed with hot air, to the surface of the roadway. About an inch of coarse gravel is then spread over the roadway and left to be worked in by the traffic. The author finally examined into the expense of construction and maintenance of the various systems of roadway, drawing the conclusion that though, for town roads, macadam was the cheapest in original cost, it was by far the most expensive over a term of years, whereas, although his asphaltic wood pavement cost more at first, it was cheaper, over a lengthened period, than macadam, or most other roadways; and would compare favorably with other systems, in that and most of the requirements of a good modern roadway
Fig. 4.-MODE OF CON STRUCTION ON THIRD AVENUE.

107 specimens of good stock, 1 buffalo, 15 horses, and 86 hogs, and were all sold at Southampton at high prices. The lean cattle, 320 in number, arrived in Schleswig-Holstein in excellent condition, and compared favorably with lean Denmark stock. Another cargo was sent for at once, and since the cost was much less than similar animals could be got for anywhere in Europe, there is a good prospect that the United States will be looked to hereafter for the entire supply for these rich pasture grounds, where thousands of cattle are fattened every year for the markets of France, Germany, and England

Asphaltic Wood Pavement

Recently at the Soclety of Engineers, London (Mr.' R. P Spice, President, in the chair), a paper was read by Mr Henry S. Copland on "Modern Roadway Construction." The author first adverted to the extent to which the work of road making was constantly going on at the present time and noticed the progress made by the various nations of antiquity, the state of decay into which the medieval roads had been allowed to fall, and the various attempts made to improve them since the beginning of the present century. He then described the principal systems of roadway con struction now in use, and pointed out the extent to which, he considered, they met, or failed to meet, the requirements of a good modern roadway; namely, safety, easy traction; noiselessness, freedom from dust and mud, durability, faciity, and cheapness of construction, maintenance, and repairs to itself, and to the gas and water mains, etc. He explained the principles upon which, with a view to avoiding the defects of previous systems, he had designed the as phaltic wood pavement, the use of which was now increasing. This pavement consists of a bed of concrete, with a layer of asphalt over it. Upon this are laid transverse

Fig. 5.-NEW YORK ELEVATED RAILROAD STATION AT SOUTH FERRY,

