when the new shoots are from three to six inches long, in the back instead of in the sides of the head; the body is he spring, or while in blossom. As soon as the fruit is set bent, abdominal intestines not closed, heart largely developed examine the vine; spread out the new wood so that each and herniated. The literal references to the foregoing are: bunch of grapes will hang free and clear; pick off all the mall stems of fruit and fasten the vines securely, so that the wind will not destroy your crop by breaking the young ${ }^{\text {be }}$ and tender branches.
When the wood has grown so that there are three leaves beyond the last bunch of grapes examine the vine, select the branches you wish to save for fruit bearing the coming year, and keep them tied up until they have grown as long as you wish to make use of. The ends of the other bearing branches should be pinched off as soon as they reach this point, "three leaves beyond the last stem of grapes."
Break off all shoots and laterals as fast as they make their appearance, but on no account injure the leaves on the bear ing canes.
The fruit will color but not ripen if the leaves are destroyed.
Grapes for fall and winter use should be picked as soon as ripe, and when perfectly dry, packed in fine dry sawdust. Select your box or jar, cover the bottom with sawdust, then ayers of grapes and sawdust alternately until full. Keep them in the coolest place you can find freefrom frost, unti wanted foruse.

THE PRODUCTION OF ARTIFICIAL MONSTERS

It is well known that both animals and plants often yield progeny of strange and abnormal form, sometimes changing the whole aspect of the offspring, at others appearing as greater or less deformities. "Sports," "freaks of nature," "monsters," and like names are popularly applied to these phenomena, despite the fact that science has succeeded in reducing certain types under definite laws. Most commonly

Fig. 1.
Fig. 2.

these organisms are sterile, but there are instances wher they reproduce their kind and become a species. Geoffroy St. Hilaire, who perhaps made the deepest investigation ever conducted into the nature and causes of their production, first conceived the idea of artificially producing them, and to this end he began modifications of the physical conditions of the evolution of the chicken during natural and artificial incubation. He determined the fact that monsters could be produced in this way, but scarcely carried his investigation further. This work has been taken up by M. Dareste, and he has lately published a volume in Paris which recounts the results of a quarter of a century's experiment ing. Eggs, be states, were submitted to incubation in a vertical instead of in a horizontal position; they were covered with varnish in certain places so as to stop or modify evaporation and respiration. The evolution of the chick was rendered slower by a temperature below that of the normal heat of incubation. Finally, eggs were warmed only at one point, so that the young animal, during development, was submitted at different parts to variable temperatures.

These perturbations resulted in the most curious and unlooked for deformities in the embryo, some being not alone peculiar to the bird, but being similar to those which have been recognized in many other animals, and even in the human species. The data obtained have been deemed so important that M. Dareste has recently received the Lacaze prize for physiology from the French Academy of Sciences.

It would be impossible, in the limited space at our disposal, to review even a fraction of the many forms of monstrosities which M. Dareste has discovered. Those that we give will, however, suffice to convey an idea of the wonderful variations produced. Fig. 1 is a chick embryo, with the encephalon entirely outside the head, the heart, liver, and gizzard outside the umbilical opening, right wing lifted up beside the head, and the development of the left one stopped. In Fig. 2 the encephalon is herniated and marked with blood spots, the eye is rudimentary and replaced by a spot of pigment, the upper beak is shorter than the lower one, while the heart, liver, etc., are all outside. In Figs. 3 and 4 the head is compressed, eyes well developed, but in m, amnion; al, allantois; v, vitellus; h, encephalon; i, eye c, heart; f, liver; g, gizzard; $m s$, upper, and $m i$, lowermemer.
The commonest case of monstrosity observed by M. Dareste has been that of the head protruding from the navel, and the heart or hearts above the head. This is a most extraordinary and new monster, and, if it persist, a chicken

Fig. 5.

with its heart on its back, like a hump, may be expected. A curious fact discovered is the duplicity of the heart at the beginning of incubation, two hearts, beating separately, being clearly seen. Another anomaly consists in heads with a frontal swelling, which is filled by the cerebral hemispheres.
M. Dareste's artificial monsters are all produced from the single germ or cicatricule (as the white circular spot seen in the yellow of the egg, and from which the embryo springs, is termed). He has not yet been able to determine artificially the production of monsters, the origin of which takes place in a peculiar state of the cicatricule before incubation. But having submitted to incubation some 10,000 eggs he has obtained several remarkable examples of double monstrosities

Fig. 6.

in process of formation, some representations of which are givenherewith. Fig. 5 shows three embryos, all derived from a single cicatricule. Fig. 6 represents three embryos from two cicatricules. On one side of the line of junction are two imperfectly developed embryos, one having no heart. The single embryo on the other side is generally normal, but has a heart on the right side. In Fig. 7 are twins, one well formed, the heart circulating colorless blood, the other hav ing no heart and a rudimentary head. Fig. 8 exhibits a double monster with lateral union. The heads are separate, and there are three upper and three lower members, those of the latter on the median line belonging equally to each of the pair.

Fig. 7.

Fig. 8.

M. Dareste's work embodies a general theory of these singular organisms, which, it is believed, will be of much
MM. Nilson and Petersson communicate to the French Academy of Sciences the following results of their late investigations into the physical properties and specific heat of glucinium: The metal is grayish, and of about the color of steel or tin. It is very light, has a density of 1.901 at 32° Fah., is hard, has a great tendency to crystallize, and when cast in globules breaks easily under the hammer. It does; not fuse at temperatures at which sea salt easily melts, and is not altered by exposure to the air. It is unalterable by oxygen when at a red heat or by sulphur vapor. In the oxidizing flame it becomes covered with an oxide film, with no phenomena of ignition. It has no action on water, hot or cold. Hydrochloric and hydrosulphuric acids and hydrates of potash and soda are decomposed by it. It disengages hydrogen rapidly when heated. Nitric acid attacks it slowly, a small residue of silicic acid with a little iron and glucine resulting. The density of the impure metal has been determined at 1.9101 . The specific heat averages 0.4084 .

A Possible New Force in the Solar Rays.

M. Forssman, who has been making investigations on the action of variously colored lights on the galvanic conductivity of selenium, concludes that it is not the light vibrations or certain kinds of them that produce variations of conductive resistance, but vibrations of another order which he thinks have neither lighting, heating, nor chemical action. This opens the road to further researches to discover whether this hypothesis be true, as, if so, its verification would be of the highest scientific importance, and amount practically to the revelation of a new mode of motion.

How to make a Strong Electro-Magnet.
To make a Jamin magnet, take a piece of wrought iron pipe about 3 inches long by 1 inch diameter, file away one

side until through (see Fig. 1), and then, after softening it in fire, wind with cotton-covered wire in the direction of its length, as in Fig. 2. It is superior to the ordinary form of magnet in its great power, arising from several causes. The poles are close to one another, and have large surfaces, and, from their proximity, the part of the wire in the interior of the tube reacts on both poles, thus utilizing the battery power to the full.

A Salmon Disease.

A remarkable fatality has befallen the salmon in the rivers of Cumberland and Westmoreland, England. A short time ago large numbers of salmon were found dead on the banks or floating on the surface of the river Kent, and, though poisoning was suspected, the river watchers have been unable to find any trace of pollution, either willful or accidental. In most cases it was found that the fish were "kelts" or spawned fish, which had, as is frequently the case, succumbed to the effects of exhaustion after spawning but the great number of fish dying in this way at one time was very remarkable. In the Eden, however, a more serious state of affairs exists. Large numbers of salmon-not only kelts, but clean fish lately arrived from the sea-appear to be affected with an epidemic which destroys hundreds of them. The head and tail first, and gradually the whole body, is attacked by a disease which appears to eat array the flesh, turning it white, and giving the fish the appearance of being affected with leprosy. Such fish are entirely unfit for food. Correspondents describe them as leaping out of the water, as if in pain, and in frantic efforts to escape; some return to the sea, but many perish in their attempts to reach the salt water. The salmon caught in the estuary are not diseased in this way, and, as the epidemic is said to be spreading to the trout, it would appear that some peculiar condition in the fresh water is the cause of the remarkable phenomena.

Improved Rolls for Beams.

Mr. Josef F. De Buigne, of Vienna, Austria, has recently patented a new method of grooving rolls, so that the groove forming the web of the beam or bar shall form an obtuse angle with the axis of the roll and with grooves which make the flanges. By this arrangement a vertical pressure is exerted at each pass at the same time upon the web and-upon two of the opposite flanges, so that any desired sectional shape may be made by the use of horizontal rolls, only independent of the relative dimensions of flanges and web. The patent is offered for sale by Messrs. Wirth \& Co., of Frank-fort-on-the-Main, Germany.

A New Explosive.-Professor Emerson Reynolds sugA Nests a compound of 75 parts chlorate of potash and 25 parta sulphurea (a substance obtained from a waste product of gas manufacture), the ingredients to be mixed as required at the time of using.

