and Ludwig in their writings upon the phenomena which seem to reveal a vegetable instinct. They all incline to
belief that plants experience every order of sensations.
F. Edward Smith, the English botanist, thinks that plants can feel, and are capable through that faculty of a consciousness of well being and felicity
Percival believes that plants perform voluntary actions when they turn their branches to the light.
Among the philosophers of the eighteenth century who saw animated beings in plants must also be ranked Dr. Eras mus Darwin, the grandfather of the celebrated naturalist, whose recent works have thrown some light upon the vexed question of the origin of species. In that book, too little known, but the delight of Goethe (" The Botanic Garden "), Dr. Darwin plainly asserts that in his eyes the plant is an
animated being-a creature capable of numerous sensations, as of existence, of pain, and gladness.
Dr. Martius, one of the most eminent men of modern science, accords to plants not only the faculty of feeling, but also an immortal soul. To the voice of that celebrated botanist there has been lately added that of another, namely, Theodore Techner, an independent thinker, and not the least inspired among his German cotemporaries. He was one of the first to enter into the questions which bear upon the development of the soul in plants. The new ideas and original views with which his book abounds entitle it to be considered as the first advance towards a true vegetable psychology. A soul in plants was recognized by the ancients. Empedocles, Anaxagoras, Democritus, Pythagoras, and Plato be lieved plants to be animated, and consequently ranked them with animals.
Entire peoples-the Hindoos, for example-have also re garded plants as animated beings. Among the laws of Ma nu, laws which in India are believed to have emanated from God, and to be more ancient than those of Moses, are to be found doctrines and commandments as follows:
"It is good and equitable that each father of a family without prejudice to his children, should reserve one part of his wealth for other animated beings, to wit: plants and animals."
"Plants and animals have internally the sentiment of existence, and also of pain and happiness."

According to Loubère and someother travelers, the priest of Siam and Laos apply the law forbidding to kill not only to men and animals, but also to living plants. They exhibit as much repugnance to the destruction of a tree, or simply the cutting of a branch, as to the mutilation of a man; and they refuse to eat of green fruits lest their development should be arrested. These views are entirely opposed to those which belong to the people of the Occident. From earliest childhood, in our schools and elementary books, children are taught that men and animals have the faculty of motion and are living beings, and that plat
soil live, it is true, but are not animated.
soil live, it is true, but are not animated.
But, as M. Techner has observed, it wo
But, as M. Techner has observed, it would be quite other wise if the preceptor said to his pupil, "Animated beings are divided into classes. One is composed of beings which possess the power of transporting themselves from place to place; these are men and animals. In the other class we find beings fixed in the soil where they are born; these are plants.
The latter resemble us less than animals, yet live and grow as we do." For these and many other reasons we believe them equally animated. If our children are thus taught they will be less indisposed when older to deprive the plant of its soul than we are to recognize its existence at the present day. Such numerous and striking analogies in the vital func tions of beings in the two kingdoms, animal and vegetable, are revealed by physiology every day, that no one cau refuse to refiect upon the facts or reject without a candid examination the proposition we are about to consider in a succecding paper, that the plant is an animated and sentient being.
R. C. K.

WILD BEAST EXTERMINATORS WANTED.

It is somewhat strange that with the full knowledge that is possessed of the frightful numbers of human beings yearly slaughtered in India by wild beasts, some efficient means are not taken for the extermination of the latter. In 1875 20,805, and in $1876 \quad 19,273$ people perished from this cause. This is considerably beyond the total mortality produced by wars before the invention of breechloaders and machine guns. For example, in 1855 statistics were published in England showing that in 22 years of war 19,796 people were killed. In nine great battles, including Waterloo, 4,740 fell. Even at the present time such a number of deaths occurring in a two years' war would be deemed large, and if they oc curred through a pestilence in a great city the situation would be considered very grave. Yet to prevent such mor-
tality in both instances every tality in both instances every refinement of medical ingenuity and skill would be exerted; in the present case nothing is done beyond offering small rewards for the killing of the wild animals.
The loss does not end with that of human life. During the above two years the aggregate of cattle killed by tigers, snakes, and wild beasts generally aggregated 101,635. One tigress is known to have slaughtered 127 people, and stopped the traffic for many weeks on a public road. Another killed
upwards of 50 people and caused the abandonment of 13 villages. Against the death rate of victims we can place the amounts paid for rewards for killing the animals, namely, for $1875, \$ 52,326$, and in $1876, \$ 54,314$, which is absurdly small in view of the magnitude of the evil to be pre vented.

We look in vain through Dr. Fayrer's exhaustive paper on
this subject, recently read before the Society of Arts, for a this subject, recently read before the Society of Arts, for a
suggestion of a practical plan for checking these inroads. But one project is proposed, that of Captain Rogers, and ' that is the clumsy expedient of setting spring guns, which can with doubtful economy be made, we are informed, of old muskets. In connection with this system, which seems like the patent double-ender gun, dangerous alike to friend and foe, it is proposed to organize hunting parties of natives. These expeditions might also be considered as of doubtful value if we are to credit the assertion elsewhere made that the inhabitants have a "deep-rooted prejudice against killing a snake." Unfortunately the snakes have no deep-rooted prejudice against killing the inhabitants, as the latter succumb to poisonous bites at the rate of some 1,200 a year.
We have no means of knowing the exact value in which a Hindoo's life is held by the British Government, unless we divide the number killed by the amount paid to stop the source of death, and the result is two dollars and sixty-six cents per life; but from a humanitarian point of view it seems that the need of some potent means of eradicating this scourge is pressing. This consideration might be especially commended to the philanthropic gentry who so mercilessly condemned Stanley for his destruction in battle of a few dozen African savages. But if British ingenuity, which,
by the way, still stands nonplussed over the grave problem by the way, stillstands nonplussed over the grave problem
of intercommunication between railroad carriages and locomotive, cannot suggest a feasible project, we venture to be lieve that the offer of an adequate reward will speedily bring forth plans from this side of the Atlantic. There are plenty of adventurous geniuses in the West who probably would willingly organize a corps of tiger exterminators to employ machine guns, hot water projectors, Greek fire, poisonous chemícals, or potent explosives, as their ingenuity might suggest, provided somebody made it an object to them,
to do so. Why cannot we have a "Scientific Expedition," under the auspices of the projectors of that much adver tised one now begging Congress for a boost, to undertake this work? If participants cannot otherwise be obtained, there is the question of how to dispose of tramps still open.

THE PROGRESS OF ASTRONOMICAL PHOTOGRAPHY.
Astronomical photography comprises, first, the represent ation of the surface of celestial bodies sufficiently near to us
give a magnified image when observed with the telescope Thus the sun with its spots and faculæ, the moon with all the details of her surface, and such large planets as Jupiter, Mars, and Saturn, have all been photographed. Secondly, it is possible to obtain by this means exact images of star groups, and thus to determine at once the relative situation of certain stars for a given epoch. By means of photography it is possible to observe as it were automatically pas sages of planets before the sun, eclipses, occultations of planets by the moon, and passages of stars at the meridian for the determination of absolute time. By its aid also we are enabled to reproduce the solar spectrum with all its lines, and to extend the limits thereof beyond the visible rays. Photographic pictures in the stereoscope also show very clearly the sphericity of the bodies represented. Lunar craters, the rings of Saturn, the spots and faculæ of the sun, there appear in high relief, and the observer is enabled to ee that the faculæ are elevations and the spots depressions. The finest astronomical photographs have been produced by Warren de la Rue in England, the late Father Secchi in Rome, Mr. Lewis Rutherford in this city, Ellery at Mel bourne, Negt at Ghent, Gould at Cordova, and Janssen at Paris. Mr. Rutherford has obtained superb views of the moon with an exposure varying from one fourth second for full moon to two seconds for the first and last quarters. With these photographs M. Elie de Beaumont has shown
how much may be deduced geologically with reference to the lunar surface, which is not affected by the destructive action of water or of any atmosphere. The comparison of photographs taken at long intervals apart also allows of the recognition of any changes which may have occurred in the lunar surface. It is now reasonably certain that active forces are at work in the moon's interior, and the disappearance some twelve years ago of a cavity which is shown on the maps of Maedler made in 1829 has educed the theory that it was filled up by an eruption of white material. This can only be verified by comparisons of photographs taken over many years.
Astronomical photography has recently, however, assumed a higher place than as a mere mode of reproduction of the mages seen through the telescope. It has, in fact, become an important means of discovery, and the researches of Janssen have shown that photographic pictures reveal phe-
nomena otherwise totally invisible. It was through such prints that he discovered the photospheric network around the sun. The great difficulty encountered in studying the solar photosphere has been to determine the exact form of the granulations or " willow leaves" which appear to form currents of semi-liquid matter. Small photographs showed little or nothing of these, and the reason is found in the phenomenon of irradiation, which causes the image formed by ory intense light to extend beyond its real
assume a false form. This was especially noticeable in all photographs of total eclipses; the images of protuberances renched on the lunar disk often to the extent of 10 or 20 seconds. The same effect is produced on the eye. Now the average diameter of the granulations of the photosphere is but a second of arc, and it is therefore easy to perceive how
a very small degree of irradiation suffices to confuse all the
details of their form. Janssen has overcome this difficulty by enlarging the image and shortening the time of exposure In a minute fraction of a second he obtains an image 10.8 inches in diameter. On this can be seen, first, a fine general granulation covering the solar surface. The grains, more or less rounded, have diameters varying from some tenths of a second to 3 or 4 seconds. The illuminating power of these granular elements is very unequal, doubtless because they are situated at very different depths, and those which attain are situated at very different depths, and those which attain the solar surface. The most curious result, however, derived the solar surface. The most curious result, however, derived
from an inspection of the photograph is that the photosphere from an inspection of the photograph is that the photosphere
appears divided into a multitude of compartments, having rounded or polygonal contours, the dimensions of which at tain sometimes a minute or over (the diameter of the entire solar disk is about 32 minutes). In the intervals between hese figures the grains are clear and well defined; in the in terior they are half effaced, broken, and often absent. It may be supposed that in these spaces a violent commotion has mixed together or confounded the granular elements, and hus a new confirmation is afforded of the fact that the activity of the photosphere is always very great even when no spots are visible.
We have already fully described the apparatus used by the various expeditions for photographing the transit of Venus of 1874. It may well be asked if the immense labor spent upon the observation of that phenomenon has served to fix a value of the solar parallax more exact than that already obtained by other methods. All that is known at present is that the parallax deduced by the British Astronomer Royal from the direct observations of English astronomers ($8.76^{\prime \prime}$) is a little less than that determined by Professo Newcomb by taking the average of the best known result $\left.8.85^{\prime \prime}\right)$. Examination of the photographs has further resulted in proof of the existence of an atmosphere around Venus Mr. Rutherford, of this city, has the honor of being the first to photograph the star groups, and he uses for that pur pose a refracting telescope, 13 inch objective, mounted equatorially, and moved by clockwork. The duration of exposure depends upon atmospheric conditions, but about minutes suffice for stars of the 10th magnitude. Mr. Rutherford has obtained very exact charts of the Pleiades, of the constellations Præsepe and Perseus, and of the stars near 61 Cygni. Gould, at the observatory of Cordova, has also achieved remarkable success in this line. Last November he possessed proofs suitable for the micrometric measurement of 84 celestial bodies, of which three fourths were sta clusters. The plate representing the cluster of Eta of the Ship showed 180 stars, many of which are of the 9th mragniude. Mr. Gould has also obtained fine photographs of the moon, Jupiter, Mars, and Saturn.

THE NEW EGYPTIAN COTTON.

The Bahmian cotton, a new kind of plant not long since discovered in Menoufieh, Egypt, is puzzling botanists to deermine whether it is a hybrid or some foreign kind acciden ally brought into the country. It appears to be a cross be tween the Bahmian (Hibiscus esculentus) and the ordinary plant (Gossypium barbadense), the former having fertilized the latter at the time of blooming. The new plant presents marked characteristics. It has several straight stalks, of which the largest grow to a height of about three yards. In place of branches there are two or three pods, springing from the junction of the leaves and the stem which they surround the junction of the leaves and the stem which they surround. bush, with one or morestems carrying a number of branches, ometimes much extended, bearing the pods (though often with intervals of two, three, or four leaves, without any a their junction), the leaves of the Bahmian cotton are large strongly indented, and are of a much darker green than hose of the other plants. The flower is yellow with interior purple spots, very like the ordinary cottons, though generaly rather larger and carried on long stalks.
The report of the Egyptian Government on the plant points out that if it be a hybrid, the fact is of great impor tance scientifically, for such instances are rare in horticul ural records between species so different; and those which have been produced to this time are generally sterile, while the new plant is more fruitful than the ordinary description Last year all the great Egyptian growers tried the seed, and the crop is reported to be from 6,720 to $7,680 \mathrm{lbs}$. per acre. It is claimed that this will increase nearly 30 per cent with carefully selected seed and plants not overcrowded.

New Agricultural Inventions.

A Household Press for Fruits, etc., has been invented by Miss E. A. Stears, of Brooklyn, N. Y. This apparatus may be described as a box having formed on it a support for the nut of a compressing screw, and containing a drawer for re ceiving the juice expelled by the press, and having fitted to it a removable perforated cylinder for containing the fruit or other article to be pressed.
In an improved Plow and Seeder, or machine for scatter ing seeds and plowing them in, invented by Mr. P. H. Elliott, of Greenville, Texas, the essential addition is a rotating flanged drum composed of two perforated cylinders, one of which is adjustable about its axis, for the purpose of filling it with seed and also regulating the size of the discharge openings. This revolving seed distributer is placed in front of turn plows, applied to the draught frame.
An improved Grain Bagging Machine has been invented by Mr. F. H. Relph, of New York city. The chief element of the apparatus is a horizontal rotating frame carrying the

