srintifir Amerim.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors.
published weerly at
NO. B'Y PARK ROW, NEW YORK.
o. D. MUNN.
A. e. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN

 One copy, one year, postage included...One copy, six months, postage included
Clubs. - One extra copy of The Scientific American will be supplie gratis for every club of five subscribers at $\$ 3.20$ each; additional copies a

The Ṡcientific American Supplement

is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMEN
is issued weekly; every number contains 16 octavo pages, with is issued weekly; every number contains 16 octavo pages, with handsome
cover.uniform in size with ScIENTIFIC AMERICAN. Term of subscription cover.uniform in size with SCIENTIFIC AMERICAN. Terms of subscription
for SUPPLEMENT, 85.00 a year, postage paid, to subscribers. Single copies for SUPPLEMENT, 85.00 a year, postage paid, to subscribers.
10 cents. Sold by all news dealers throughout the country
Combined Rates. - The Scievtific American and Supplement
will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal
Address MUNN \& CO., 37 Park Row, N. Y.

the news agents.

NTIFIC AMERICAN is -Under the facilities of the Postal Union, the Sor larity, to subscribers in Great Britain, India, Australia, and all other Brit ish colonies; to France, Austria. Belgium, Germany, Russia, and al other European States; Japan, Brazil, Mexico, and all States of Cen
tral and South America. Terms, when sent to foreign countries, Canad excepted, 84 gold, for SCIENTIFIC AMERICAN 1 year ; for both SCIENTIFIC
AMERICAN and SUPIEMENT, 89 gold for 1 year. This includes postage which we pay. Remit by postal order or draft to order of Munn \& Co., 37 Park Row, New York.

VOL. XXXV III., No. 13. [New Series.] Thirty-third Tear
NEW YORE, SATURDAY, MARCH 30, 1878.

Contents. (Illustrated articles are marke with an asterisk.)	
	Sarine enfine eoconomy
	Dcean phe
	Patent dec
为	
unieations reeeived........ ${ }^{24}$	
n, Ergytian................. 19	Plant absorpt
otin	Plant mind
Ebony	10
Explosions in mines........... ${ }^{190}$	Rosangifu
退	
	Soda ash for boil
Glassexpoliosion of	Steel armorifit.].
ate	Titcermila ${ }^{\text {anprat }}$
opathic insurai	
vgate expeadition....	
	cycle, improved 201
Inventions, aricieutitira...:	
citions,	
Kerosene, elanarerous.............: 19	

TABLE OF CONTENTS OF the scientific american supplement NO. 117

For the Week ending March 30, 1878 .

 Price 10 cents. To be had at this office and of all newssealeirs. II. CHEMISTRY AND METALLURGT. Action of the Copper-Zinc

VI. NATURAL Mistorv. ETC.-Corsican Blackirds.-Education of in-
 Remit by postal order. Address
improvements in the postal service: A new bill providing for the better classification of mail matter and rates of postage thereon will soon be submitted to Congress. The general principles on which the measure
is based are that the Government should encourage the disis based are that the Government should encourage the dissemination of intelligence by providing for the convenient and cheap transmission of letters, newspapers, periodicals, and books; that by a system of registration as a condition of cheap transmission, objectionable publications may be kept out of the mails; that uniform conditions should be prescribed for the transmission of all useful publications; that the postmaster at the place of mailing shall determine what may be sent, and fix the postage rate; that the postage on the same general class of publications, irrespective of
frequency of issue, should be uniform at all post offices, and whether for specimen copies or to regular subscribers.
The essential object is to secure uniformity, and thus to obviate the constantly varying regulations or interpretations of the present postal laws relative to newspapers and periodicals made by different officials. These, when involv ing discrimination as to the class of periodicals, are apt to be vexatious and rarely to meet with general acquiescence while they leave room for doubt or error which may easil become oppressive to those whose business largely depend upon the mail service. At the same time, the law as it now stands presents many anomalies, as, for instance, the fact that a monthly weighing just over two ounces, published in any
of the large free delivery cities, pays $\$ 240$ postage per thou sand subscriptions in the city where published, while but about $\$ 50$ postage is charged on the same if sent to any other part of the country, with free delivery at all other let ter carrier offices.
The bill before us seems well adapted to meet all difi culties. It provides that newspapers and other periodical publications shall be registered yearly, and that thereupon the same may be sent at a uniform rate of two cents per pound or fraction. The periodical must be regularly issued
at stated intervals, designed for dissemination of public inat stated intervals, designed for dissemination of public in-
formation, formed of printed paper sheets, and published formation, formed of printed paper sheets, and published from a known office

the best way to encourage invention

In every discussion of the question of invention and it relations to human well being, it is assumed as a fact indis putable that it is a good thing to encourage invention. Afte the worst has been said against the incessant changes incidental to the activity of inventors, the common sense of all civilized men assents to the assertion that, in the aggregate, the labors of our inventors have been enormously beneficial, and that there is no reason to suppose that the time will come when invention will cease to be beneficial. The only point of difference is in regard to the best means of further ing the good work
On the one side are those who hold that the simplest, mos direct, and honest method is to recognize the inventor's ex clusive right to the products of his thought and labor, and to place such intellectual property, for a definite time at least, on the same legal footing that other sorts of property enjoy; and in proof that this system does produce the effect desired the friends of patent rights point to the inventive activity developed in this country under the working of such a system.
The objectors say no; the result observed is due to other causes. Necessity is the mother of invention. A race of inventors has sprung up in this country because they were needed. Human labor was scarce and high. A new country was to be conquered and brought under cultivation. Wide fields demanded rapid means of sowing and harvesting. A scanty population and distant markets demanded greater facilities for rapid transit. A high ideal of life demanded a thousand new elements of gratification; and to supply all these demands a thousand new machines and processes had to be invented.
To a great extent all this is true, and much more might be said in this direction; but there is in all this no proof that without the encouragement the patent laws afforded the most of the alleged demands for invention would have been met. Barring inventions and their results, the conditions
of life in this country have been precisely paralleled in Northern Asia. Over a large part of Russian Asia the climate is similar to that of our Northern States, wherein inventors have been most prolific. Its vegetable productions are very like ours. Our familiar forest trees abound in its wooded regions, and its plains are not unlike our prairies. Its soil is as fertile as ours; its minerals abundant and its recent conquerors have many of the characteristic of our own people. An American traveler styles the Cossack the Yankee of Asia. He is energetic, thrifty, ingenious, handy with tools, can turn his hand to anything, and i mentally as bright as the average Yankee. His necessitiesnatural necessities-have been as numerous as those of the
Yankee pioneer. His inventions-where are they? He quickly adopts the railways, telegraphs, and other products of Western invention, but adds no new ones. Our inventor of living of the civilized world; the Cossack, under simila natural conditions, open to the same natural necessities, en dowed with the same natural gifts, has conquered a mag nificent country, but he lives much as his fathers lived, and his influence upon civilization is nil.

But the Cossack is of a different race, it may be objected True enough; butinvention is not a matter of race. Brough
inventive race in the world, the Chinese coolies, becom inventors, as our patent records show. "Ah!"our objector continues, "that is the point. The surrounding influences of education, newspapers, and the rest, make all the differ ence here. The Cossack has had none of these; nor to so reat an extent has the coolie at home."
Well, then, let us look at the Yankees of Europe-the Swiss. They are of our own race. They are a free people They are energetic, thrifty, and, for the most part, intelli gent. The facilities they offer their youth for industrial ducation and practical training in the arts and science ave long been superior to ours; and the Swiss government ong ago adopted the very means of anti-patent "encourage ment" of invention that the opponents of patent rights expect so much from. The progress of the industrial art has there been left to the natural laws of free trade and open competition, so-called; that is, the open piracy of the inventions of all nations. The Swiss have not allowed in vention to be "hampered" by pre-existing claims. They have not allowed inventors' royalties to increase the cost of their manufactures. And the result is-unrestricted and mrivaled progress in the arts? Wide awake mechanics and clever inventors? That ought to be the result, if the anti patent theorists are in the right; but such is not the result As Professor Shaler has so pertinently observed: "Despit the remarkably advantageous position of Switzerland, the natural vigor and capacity of her people, and their ad mirable system of public education, there have been disad vantages in connection with this plundering system (cf re serving the power of using all inventions without paymen therefor) that give us another proof that, in the long run honesty is the best policy. All the while that Switzerland has been trusting to outside training for every invention sh has applied in her manufactories, she has failed to train he wn people in inventiveness; the result is, that Switzerland of all civilized countries, is the most backward in the adapta tion of every skillful appliance in every part of her economi

The impolicy of their course has lately come home to them with alarming force. For centuries they have led the world in the art of watch making; yet to-day American watche as good as their best can be sold at their doors for less mone than they can make them. "Our well developed mechanical imagination has so organized the labor and the machines ed in this branch of manufacture, that the advantages de rived therefrom outbalance the vast advantages of Swiss labor. Our labor is double or more, our taxes double or more our interest about double that of Switzerland; we have n traditional skill; nevertheless inventiveness conquers them all. Yet the inventiveness used in this work is but a very small part of our vast store of this priceless product of imaginative labor that has been created for us by our paten system.'
All the conditions favorable to invention, that can exist in any country in the absence of patent rights, have been a work in Switzerland; but the Swiss have failed to distinguish themselves as inventors. All the conditions favoraille to suc cessful competition with the manufactories of other coun tries, with the privilege of using without paying for them th inventions of all other nations, have not enabled the factorie of Switzerland to maintain their original supremacy. They have fallen behind because their artisans, lacking the stim lus to invention which patent rights afford, have fallen be hind their brothers in this and other countries. They do not improve themselves; they do not improve their means and methods as ours do; they are not so fertile in resources, inven tive, creative. And however high their technical skill may be they cannot compete with men who are ceaselessly improving themselves and their processes in the hope of reaping the re wards which patent rights, and patent rights easily obtain able, hold out before our artisans as incentives to invention
There may possibly be better ways of encouraging the arts and sciences, but so far as human experience has gone th simple recognition of an inventor's right to his creations has proved most productive of good results.

A POPULAR PROJECT

For many years the hope of finding a commercially useful orthwest passage was enough to justify to the masses the cost and risk of polar exploration. Before that hope was dissipated the humane desire to find Sir John Franklin or the remnan of his lost crew kept public interest alive to the need if no he value of Arctic expeditions. Both these objects failing, there remained only the possibility of glory to be won, or some indefinite promise of advantage to science to be gained through polar observations. For the first the public cared little; for the second it was at best very doubtful whether the profit would justify the cost. And to the pertinent ques tion, What is the use of spending more money and riskin more lives in that direction? the advocates of Arctic explora ions had little to answer that the unscientific could appre ciate.
But now, thanks to weather warnings, a significant change has come over public feeling on this point. The most pop ular project in Congress and out, at this time, is Howgate scheme for the scientific exploration of the regions about the North Pole. Committees of both Houses of Congress have made reports decidedly favoring the project, while promı nent commercial and scientific men everywhere have ex pressed their approbation of the undertaking
Formerly when scientific men insisted that polar observa tions might be helpful to the science of meteorology, th quick retort was, "What of that?" Meteorology was the
the science that showed the least promise of usefulness. The yield itself before the tinfoil could be impressed deeply idea that it could ever be serviceable through weather forecasting had not been broached, or, if it had been timidly suggested, was received with derision. The very Scriptures pronounced against it. Wherefore, then, should human life and public treasure be sacrificed to no good purpose?
But once again in the history of science the incredible has come to pass. The seemingly useless has proved to be of the utmost value. Weather prophecy has risen almost to the dignity of a governmental bureau, and affairs of national importance-agriculture and commerce, social and political movements-are largely regulated with reference to the daily report of "probabilities." And as fast as men come to understand that Arctic observations are necessary for the perfection of our already enormously useful weather service, they cease to look upon Polar explorations as something akin to foolhardy venturesomeness or scientific folly. The advancement of meteorological science is now something that appeals to every man's everyday interests; and when the exponents of the science say that the great weather factory of the northern hemisphere may lie around the Pole, and that the causes of many of our most destructive storms may be there at work, the reply is, "Go and see, and good luck go with you. If you want money for the work, you shall have it." It is yet-though it may not always be-impossible to prevent disastrous storms; but the damage they do can be largely prevented through timely warning of their approach. And it is possible that Howgate's colonies may be converted into permanent international meteorological stations, reporting daily by telegraph, and so be enormously beneficial to commerce, agriculture, and other industries, even if they should utterly fail on the score of mere geographical exploration. At any rate the scheme meets the hearty approbation of all thoughtful people, and it is to be hoped that the proposed appropriation for its furtherance will be sufficiently liberal.

THE PHONOGRAPH

It is a peculiar feature of the Edison phonograph that no mere description can impart any really adequate idea of its performances. Fully familiar as we are and have been with the machine since its inception, it is still impossible for us to listen to it without a feeling of astonishment and a well defined doubt that our senses are not deceiving us. The extreme simplicity of the contrivance enhances this notion. There is nothing in the half articulated monotones of the complicated Faber apparatus to excite surprise, because, although illogically, the hearer half expects that such an assemblage of intricate mechanism will produce more startling results than it does; but here is really nothing but a revolving cylinder covered with a sheet of tinfoil, and a speaking tube; no evers, no springs, no keyboards, no artificial lips or larynx, no bellows. If we lived in 1678 instead of 1878 the life of Mr. Edison would not be worth a moment's purchase; in fact, he would have been resolved into carbonic acid, hydrogen, and his other constituent gases long ago in the flames set apart for earthly communers with his satanic majesty.
If accurate and clearly enunciated repetition of the sounds made in it is the ultima Thule of the phonograph's capabilities, then it has already attained that point. Where it is open to improvement, and to this the attention of the inventor is now being devoted, is in augmenting the intensity of the sound. In form it is substantially the same as when it was first described in these columns; that is, it consists, as plainly shown in our illustration, Fig. 1, of a brass spirally grooved cylinder, A, mounted on a long horizontal screw, the cylinder being rotated and at the same time moved laterally by turning a crank on the end of its axis. The chief modification is the abolition of the receiving membrane,onediaphragm,B,serving the double purpose of vibrating in response to the voice, and so indenting by the diamond tipped point, D , attached to the spring, E, the tinfoil wrapped about the cylinder, and also revibrating in response to the movements mechanically imparted to it by the indentations already made passing under the point. It is evident that this change must materially improve the reproductive power of the apparatus, because the size and nature of the membrane materially affect the vibrations it makes, and where two membranes are used a slight dissimilarity between them might result in considerable alteration in the sound emitted. Now, however, the same diaphragm revibrates, and the sound is modified perhaps as little as can be expected, the modification fortunately being in intensity and not materially in quality. The loss is manifestly due, first, to the inability of the rigid plate of metal, C, employed as a diaphragm to register the lateral vibrations which take place in direction parallel to its own plane; and second, in its vibrations being checked in amplitude by the friction met in overcoming the resistance of the foil, its own inertia, and in some degree probably the elasticity of the rubber pads in which it is held, as shown in the section, Fig. 2. Still a rigid plate seems to be a necessity, for it is doubtful whether a thin membrane, such as gold beaters' skin, while responding more fully to the sound waves, would support the point in making its indentations; that is, it is likely that it would

uge phonograph to go in the great bronze statue of Liberty giant can make a speech audible over the entire bay. In view of what Mr. Edison has already accomplished, his success in this respect would not surprise us.

TREE WASTE AND ITS SEQUENCE.

The matter of forest tree culture and preservation is in rather an anomalous state in this country. At one end of the national domain, people are planting trees and studying every means to turn denuded lands back into forests; at the other, woods are being felled and a small war is in progress against the Government on account of its preventive efforts. In Massachusetts societies are organized to stimulate the preserving and renewing of forests; in Louisiana, Alabama, Florida, and Montana, the authorities are denounced as interfering with the best interests of the people, because an
endeavor is made to stop the wholesale denuding of public lands and sale of the timber for private benefit. With the legal aspects of this question of forest destruction in the South and West, it is not our province to deal, but the considerations in favor of protecting woodlands are of importance not merely to every agriculturist, but to every one, and they should be fully realized by all who believe that the only value of forests lies in the amount the wood will fetch per cord.
If any one is disposed to think that our forests are inexhaustible, at least for a long period to come, he has only to cast his eye over the woodland map in General Walker's valuable statistical atlas to perceive his delusion. He will see that the number of heavily wooded tracts having 360 or more
acres of timber to the square mile is startlingly small. The area of all such districts is equal only to about that of th Atlantic States, and the remainder of the country, fully four fifths, has no timber, the map showing a uniform blank. Now consider the enormous amount of lumber used yearly in manufactures. Nearly $\$ 144,000,000$ is invested in the sawn lumber industry alone, that is, the production of laths, shingles, and boards. Add to this the fact stated by Professor Brewer that wood forms the fuel of two thirds of the population, and the partial fuel of nine tenths the re maining third, and some general idea of the enormous drain maining third, and some general idea of the enormousdrain
constantly in progress upon our forests will be reached. This, however, is only the direct draught for purposes of util ity. Immense areas of woodland are yearly denuded by forest fires, large tracts are purposely burned as a speedy way of clearing, and thus the wooded regions are rendered more and more sparse. If forest fires were prevented as far as is practicable, if trees were constantly being planted, and if the reckless denudation of woodlands could be stopped by the laws already in existence, but apparently notenforced, there is little doubt but that we possess timber enough to supply indefinitely all our needs either as fuel or for manufactur ing purposes; but save in isolated instances trees are not being planted, we have no schools of forestry such as exist in Europe to encourage sylviculture, and as the recent pro ceedings in Congress have shown, a part of the population claims the right for private ends to denude the woodlands now owned by the whole country, and defenders in the Legislature are not wanting to support them

We have already taken occasion to point out the dangers which result from tree destruction. The exact relation o forests and rainfall is not definitely settled; but there ar very numerous cases on record where the destruction of forests has resulted in the production of desert wastes, and where trees have been replanted humidity has returned. It is laid down, however, by such authorities as Dr. J. Croum bie Brown, of Scotland, and others who have made especia studies of the subject, that " within their own limits and near their own borders forests maintain a more uniform degree of humidity in the atmosphere than is observed in cleared grounds. They tend to promote the frequency of showers, and if they do not aug ment the amount of precipitation they proba bly equalize its distribution through the dif ferent seasons." "In India," says Mr. B. G Northrop, in a late address before the Connecticut State Board of Agriculture, "three quarters of a million people have been starved to death since the forests have been cut off, causing the springs to dry up."
It is needless to multiply warnings of this kind. In the thickly settled countries of Europe each generation is bound by law to leave the forests in as good condition as it found them. Forests are protected from fire and they are regarded as public property. Until we adopt some similar course, each succeed ing generation will transmit to posterity wood lands more and more depleted. The result is only a question of time. The natives of parts of South Africa tell of giant trees and forests, fertile lands, and abundant floods and showers, all existing or occurring in a region now little more than a dry and arid desert; such will be the traditions of our own descendants. As the soil becomes unfit fo agriculture, migrations will follow, favored regions will receive an overplus of population which cannot obtain all its supplies from the soil, and dependence upon other nations fo necessaries of life, the first step downward in a country's decadence, is taken. Exhaustion
of national existence

ASTRONOMICAL NOTES
 y berlin m. wrieht.

Penn Yan, N. Y., Saturday, March 30, 1878. The following calculations are adapted to the latitude of New York city, and are expressed in true or clock time being for the date given in the caption when not otherwise stated.

Mercury sets Venus rises.

Venus rises. Mars sets.. Jupiter rises.

H.m. PLANETS.

Venus is upon the boundary between Aquarius and Capri Vrnus, being about 5° southwest of the λ. Mars is about 7° directly north of Aldebaran in the Hyades being a trifle north of the earth's path. Uranus is $1^{\circ} 5^{\prime}$ north and 9 m . west of Regulus.
IT is intended to form in Paris a commercial and industrial museum, where the public will find samples of raw materials from all parts of the world, and samples of articles produced therefrom.

