Chief Justice Chase says: "Mount Uniou among the best, cheapest, and most progressive of Amermade, new Buildings under way. The College year of Spring, Summer, and Fall Terms, beginning last Tuesday
in February, May, and Auqust each year, enables stuin February, May, and August each year, enabies stu-
dents of either sex to earn expenses by teaching Winters, without losing time. Different students last year,
852; in 31 years, 13.648; property worth $\$ 5537,869$, beneftng students. For new catalogue, address Pres. Harts-
horn, LL. D., Alliance, Ohio.

Fusitess atd Persont. The Charge for Insertion under this head is one Dollar Portable and Stationary Engines; Boilers of all kinds; Cortlanat St., N. Y. Ere City Iron Works, Erie, Pa. Wanted.-Ice Machine, 10 tons capacity in 24 hours.
т. Reagan, Carthage, Mo. A Solid Steel Nickel Plat
A Solid Steel Nickel Plated Barber Brace, with ratche attachment to be used wheret here is not room to revolve
the sweep, will be delivered free to any address in the
United States on receipt of $\$ 2.75$. Best Steel Bracket United States on receipt of $\$ 2.75$. Best Steel Bracket
Saw Blades 10c. doz. post paid. A. D. Brodie. 283 Sixth Supplies for Telephone and other Electrical Experiments at manufacturers prices. Address. with stam
Jerome Redding \& Co., 30 Hanover St., Boston, Mass. For Sale.-A Vertical Tubular Boiler, but little used,
42 in diameter, 7 ft . high, 852 in. flues, cheap for cash, or will exchange for Iron Planer. Wm. J. Sanderson, Sy Experienced Superintendent in Hydraulics, Stean Experienced Superintendent in Hydraulics, Steam,
Sugar, and General Machinery; educated, infuential, prompt, systematic ; wants position; any manufacturficates Adress 85
An American gentleman, established over 18 years in Paris, wishes to develop in Europe some American pat-
ent or special industry. Best references given and required. Address J. Gitz, 5 Petit Carreau, Paris, France. Wanted.-A 2d hand No. 1 Keystone Jeweler's Forge
with Hood. AddressKendrick, Davis \& Co.,Lebanon,N.H. Friction Clutches warranted to drive Circular Log
Saws direct on the arbor; Upright Mill Spindles, which can be stopped instantly; Safety Elevators, and Hoisti lachinery. D. Frisbie \& Co., New Haven, Conn.
Telephone Supplies,-All the parts but the diaphragm of a pair of Telephones, with instructions for complet
ing it, sent on receipt of $\$ 5$. C. E. Jones \& Bro., Cin., 0 Sperm Oil, Pure. Wm. F. Nye, New Bedford, Mass. Wanted.-To Correspond with parties building Wat Wanted.-To Correspond with parties build
Wheel Regulators. O. J. Bollinger. York, Pa
Blake's Belt Studs. The most durable fastening for
Telephone Magnets. Electric Supply Co., Prov., R.I Wanted.-Parties to Manufacture a a Improved Pipe
Coupling on Royalty. Illustrated in Sci. Am. Jan. 26,1878 . Improved Wood-workingMachinery made by Walker Bros., 73 and 75 Laurel St., Philadelphia, Pa
Walrath's Improved Portable Engines best in market; to 8 H. P. Peter Walrath. Chittenango, N. Y
For Solid Wrought Iron Beams, etc., see advertisement. Addres

Lubricants, R. J.Chard, 134 M.Lane,N.Y
2a Hand Iron Planer built by Smith of Salem. Plane 13 Cornice ; price ${ }^{3} 300$. A.C.Stebbins, Worcester, Mass
Best Turbine Water Wheel, Alcott's, Mt. Holly, N. J. John T. Noye \& Son, Buffalo, N. Y, are Manufactursinds, and dealers in Dufour \& Co.'s Bolting Cloth. end forlarge illustrated catalogue.

Solid Emery Vulcanite Wheels-To Sorigina Emery Wheel - other kinds imitations and inferior Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New Yorke. Belting that onl Pack ing Company, 37 and 38 Park Row, N. Y.
Steel Castings from one lb. to five thousand lbs. In-
valuable for strength and durability. Circulars free Pittsburgh Steel Casting Co., Pittsburgh,
For Best Presses, Dies, and Fruit Can Tooks, Bliss \& Hydraulic Preses Hydraulic Presses and Jacks, new and second hand E. Lyon \& Co., 470 Grand St., N. Y.

The Niles Tool Works, Hamilton, 00 ., have
Wanted.-Second-hand Gun Stocking, and other Gun
Machinery. Address v. A. King, Lock Box 81, New
Haven, Con
For the best Boue Mill and Mineral Crushing Ma-chines-five sizes. great var
\& Sons, Philadelphia, Pa.
Machine Cut Brass Gear Wheels for Models, etc. (New Corliss Engine Builders, with Wetherill's improvements, Engineers, Machinists, Iron Founders, and Boile Makers. Robt. Wetherill \& Co., Chester, Pa
Polishing Supplies of all kinds. Walrus Leather Wheels, all sizes and shapes. Greene, Tweed \& Co., ,. Y
Wanted.-A party with some capital to conduct a frrst-class Woolen Mill at Fre
L. s. White, Baltimore, Md.
Skinner Portable Engine I Skinner \& Wood, Erie, Pa.
Fine Taps and Dies for Jewelers', Dentists', and Ma chinists' use, in cases. Pratt \& Whitney, Hartford, Ct Weldless Cold-drawn Steel Boiler and Hydraulic Tubes. Leng \& Ogden, 212 Pearl St., N. Y
Diamond Saws. J. Dickinson, 64 Nassau St., N. Y.
Galvanized Iron Cornice Machines.-The most Improved, Straight and Circular. Prices reduced. Calvin
Carr, Cleveland, $\mathrm{O}, \mathrm{\&} \&$ Hewes Machine Wks.,Newark,N.J.
For Power\&Economy,Alcott's Turbine,Mt.Holly,N.J
More than twelve thousand crank shafts made by
Chester Steel Castings Co. now running; 8 years' constant
useproves them stronger and more durable than wrought
iron. See advertisement, page 174.

E. L. C. is referred to p. 396, Scientifi Ambrican, December 22, 1877.-C. L. P.-As we unde
tand youn, it does not appar to necessarls make stand yo
differenc January 7, 1866, pp. 22, 23; September 29, 1877 pich 196; October 6, 1877, pp. 207, 212.-J. S. D.-See Scre TIFIC AmERICAN, January 30, 1875, pp. 64, 65.-D., F. \&
Co.-We do not recommend special manufactures in Co.-We do not recommend special manufactures ERICAN, January 19, 1878, under head of minerals.H. C., P. M. Co., and others.-We do notgive addresse February 2,1878 , pp. 64, 65,71 .-C. B. M.-Write to the ebruary 2, 1878, pp. 64, 65, 71.-C. B. M.-Write to the
Secretary of the Navy and to the Congressman from our district.-F. I. should consult some standard reatise on the subject. The explanation would re quire more space than we can give it in these columns There are tables in print complete enough for most
purposes.-J. M. L., and others.-Insert a notice in the Business and Personal " "column.-W. W. W. M.-It will perfectly safe, if the old boiler is in good condition F. L. can obtain explanations from the publishers.
M. C. F.-Consult any modern arithmetic.-J. S. H. If youhave a chimney high enough to give a good
draught, we think you will find the proposed mode of araught, we think you will find the proposed mode of
setting satisfactory.-H. V.-From your account it setting satisfactory.--H. V.-From your account it ing orin the connections. A check valve, it seems to information in any good modern geography.-A. does not furnish sufficient data, but it appears safer to use
wrought iron for any pressure.-W. F. B. - You might wrought iron for any pressure.-W. F. B.- ou might so far as we can see.
(1) W. G. W. wishes to know how to get
id of cockroaches. A. A misture of red lead, Indian meal, and molasses will be eageriy eaten by them and will soon exterminate them. Paris green, phosphorus or arsenic are sometimes used, but are very dangerous, will drive them away
(2) J. R. B. asks: What is the method of keletonizing the leaves of ferns, etc.? A. These skeltons are usually prepared by soaking the leaves in have become wafficiently softened by putrefaction to be easily washed out. Dip the remaining portion in a di-
lute aqueous solution of sodium sulphite, and dry slow Iute aqueous solution of sodium sulphite, and dry slow
on a piece of bibulous paper in the air.
(3) H. B. writes: In a recent article in the Cientific American concerning the Barclay stree ire, it is stated that a considerable quantity of chlorat of potash was stored in the building, and it occurs to me that the secret of the explosion might perbaps b
found in the fact that a mixture of this salt with loaf sugar becomes explosive when it is acted upon by a third substance that has the property of liberating the
oxygen contained in the chlorate, as, for instance, sul oxygen contained in the chlorate, as, for instance, sul-
puric acid. The finer the particles, the more perfect phuric acid. The finer the particles, the more perfect
the union and more rapid the explosion. An investithe union and more rapid the explosion. An investiers might possibly discover some suisstance which was capable of producing this effect. As two of these subfully as plausible as in the building this theory seed, not more so. A. True; but the third substance-a con-
centrated acid -was wanting. The hypothesis, as well centrated acid-was wanting. The hypothesis, as well chlorate lozenges, was, we believe, fully considered an isposed of in the investigation.
(4) B. W. asks: How can human skin be tanned? A. Either by the ordinary tannic acid bath or by the alum process. 1. Roll the clean skin up with convolution, cover it with water in a suitable vessel, and allow it to remain thus until the gelatinous tissues have become converted throughout. 2. Soak the skin in water, scrape off the epidermis, pass through and then
digest for 10 minutes in a boiling bath composed of lb. salt, 5.2 lbs . alum, and 6 gallons of water; then ad
6.7 lbs . wheat flour and the yolks warm alum bath, and digest with the skins for to th warm alum bath, and digest with the skins for a day o
ore. The proportions are for 40 skins. The skins t be dried on stretching frames in the air, moistened wit water, rubbed, and after a few hours ironed.
I inclose a n illustration of a fountain in which (with-
out any apparent pressure) the water rises above it out any apparent pressure) the water rises above its
own level. Will you explain the reason? A. The prinple concerned sost on on a pends on the transmission of the pressure sustained b body of water in one vessel to that in another by means of the elasticity of the air.
(5) C. T. H. writes: I intend building ary room to dry animal scraps. Would it be better
have plenty o_ ventilation, and so arranged as to have good circulation of fresh air passing through the room, or should I have just enough ventilation to carry o
the damp vapors? A. Plenty of ventilation is best.
(6) C. H. S. asks: In what part of th arying room of a laundry shculd the ventilators for carrying off the steam (or rather the ev
placed? A. At the bottom near the floor
(7) J. W. asks: 1. Which is the stronge and will stand the weather better, a pressed brick or hand made brick? A. The pressed brick is the common brick, when equally well burnt. 2. Can a man lay as many pre
made brick? A. No.
(8) G. P. H. asks: Is it practicable to irri gate a tract of land lying about 100 feet above the nelel of a river?. The land very gradually recedes from n elevated point, 200 feet from the river, where a re use to irrigate about 25 or 50 acres of this land? A. It is practicable to do so, but before the kind of pump
and size can be determined, it will be necessary to
have some further data, as, first, the kind of soil; sec ond, the amount of ra
the crops to be raised.
(9) A. S. writes: My dwelling house is sitaated on the most elevated point of my farm, the ground sloping gently therefrom on all sides; at a dis-
tance of about 900 feet from my house a small creek hever-failing springs close together at this point am about excavating for, and having a small fish and ice pond, of about 80×200 feet, and from $21 / 2$ to 6 feet in
depth, constructed in such a manner that all the springs depth, constructed in such a manner that all the springs will flow directly into the pond, while the rain water of
the creek will flow past. In the attic of the house are twe creek will flow past. In the attic of the house are
two tanking about 20 bbls. each, besides another tank holding about 15 bbls., which is used for supplying the house with hot and cold water according modern improvements; this tank is in turn supplied works very satisfactorily, and with but little labor. The op of the two large tanks is about 38 feet above the ground about the house, and this surface is about 40 also about constructing a small fountain in front of my house which I intend to supply with water from these tanks. What is the best, the cheapest, and the most satisfactory mode of filling the tanks with water from the pond, so as to keep the fountain playing
least during the spring, summer, and fall months? least during the spring, summer, and fall months? will further add, in case a ram should be suggested,
that a fall of 3 feet can be obtained for a distance of the first 10 feet, and about 1 foot for every additional 0 feet in distance; but I doubt very much whether esides in very dry seasonl for the work requrea, an fail, yet they get very low, and will probably not yield more than a barrel an hour each. A. By setting the ram in a pit in the ground, the requisite descent fo
the supply pipe can be obtained, provided a low point ram be secured to which to drain the waste water. Th and elevation, if you provide pipes of a sufflciently
large diameter for the purpose. Let the orifice in the large diameter for the purpose. Let the orifice in the
ram be enlarged to 2 inches in diameter, and the pipes e of the same size. Sometimes two rams are set connected by proper valves to the same pipes, so that
one may be repaired without stopping the supply of
(10) S. S. asks: What is the largest gun evermade? A. The 100 ton guns made in England for
the Italian navy are the heaviest thus far, but still rger ones are projected.
(11) J. W. M. asks: Can a locomotive, on straightand level track, pull a train attached to it by coupling; and can an engine drive a circular saw, disant 100 feet, as easily as if the latter were only 10 fee As we understand your question, neglecting the weight and rigidity of the lengthened connection, there will
(12) A. A. G. asks: What is the most sucing, wethod of preventing wro A. Galvanizing, wo think.
(13) J. F. asks: What will be the effect on boiler of water containing 19 grains of sulphate o gallon? A. Scale will be formed, unless you purify the
(14) C. A. S. writes: Suppose a cannon ball were fired out of a cannon in a vertical position;
when it attained the height reached by the force of unpowder, would it return to the earth at the sam
(15) E. P. C. writes: The water in a boiler of a high pressure tugboat was blown off the other
day, washed and filled up the next day, and just as the freman started the wood in one furnace and was go ing to start the other, he heard a report as if something had given away inside the boiler, and when he investi-
gated the matter he found a crack in one of the side sheets about 14 inches long, taking in three socket hrowanylight on the subject? A. We judge, from your account, that the mischief was done when the boiler was blown down, by allowing it to cool too rap-
idy, and was developed as soon as the iron was reidly, and
(16) M. M. C. writes: 1. Is there not some thing wrong a bout the following formula for fly wheels $w=\frac{m g \Delta \mathbf{E}}{v^{\prime 2}}$ If $v^{\prime 2}$ is taken to mean the square of the velocity of the rim in feet per minute, it gives an or a minute, the reverse is the case. A. The velocit in the formula referred to is in feet per second, and th formula, we think, gives correct results when rightly
applied. 2. Does Rankine's "Manual of Applied Mechanics "give examples of the practical application of is formulas to the construction and designing of ma chinery? A. Rankine's "Applied Mechanics "simply
shows the manner of determining the various formuMas. The applications are given to some extent in his "Machinery and
Steam Engine."
(17) F. S. M. asks: Has common gun or in ang powder more of a tendency to throw up tha in any other direction? A. We imagine the tendeñcy
is to throw in any direction in which the resistance to
(18) I. H. P. writes: I am desirous of con tructing a counter fountain, to play beside my soda
fountain, and niot having aqueduct water I will have to ppeal to you for instruction. I see an automatic conwith sufficient force. I want a jet to play under a bel ringing noise which makes such fountains so attractive A. By using a reservoir of compress.
tain as powerful a jet as you desire.
(19) W. E. writes: Please inform me of a practical method of mixing plumbago with molten copdo not know what is put in with it to fasten it. I have the metal at all. A. Heavy pressure pambago affect more efficacious than high temperature.
(20) W. H. W. asks: How can I remove a boiler (locomotive type)? A. Some forms tubes of my boiler (locomotive type)? A. Some forms of scale can
be softened and washed out by allowing the water to remain in the boiler, after the fire is hauled, untilit is quite cool, and then running it out. Other kinds of
scale are so hard that the only practical means of reval is by taking out the tubes
(21) E. J. M. asks: How can I construct a arometer? Must I use alcohol, and what other substancemust I use in conjunction with it that will rise occur? A. Mercury is the liquid ordinarily used in bero meter tubes, since the column of liquid is sustained by tmospheric pressure, and would be inconveniently high if alcohol was employed. You can purchase accurate mercurial or aneroid barometers of a dealer in scientific instruments, or may try the plan described in Se Scientifio American of March 2, 1878, p. 135.
(22) H. L. writes: Two taṇks stand side by side and connect through a short pipe. A pipe descendsfrom each 12 feet, and each pipe enters an iron oox in the stove. The tanks are filled with cold water, and by means of pipes and box a complete circuit of
water is established. When a fire is put in the stove the water in the box is heated, and hot water peses up one of the pipes to the tank. What gives the hot water a tendency to one pipe rather than the other? One philosopher answers the question by saying that one pipe enters the box at a higher level than the other. That
does not quite satisfy me. A. We think it probable does not quite satisfy me. A. We think it probable that the philosopher's vie
the facts are as he states.
(23) H. C. M. recommends that B. P. L. (e. 140, current volume) try the following, to stop the arge, 1 part lime; mixed dry and then with boiled limseed oil. Our correspondent states that this mixture ill set very quickly and make a hard cement.
(24) W. H. C. writes: I have a Selden steam pump; diameter of cylinder 8 inches, stroke 8
inches, bore of water cylinder 3 inches, $3 / 4$ inch live steam pipe, 1 inch exhaust, $11 / 2$ inch suction pipe, 15 feet long; it discharges through 11/2 inch pipe about 70 eet, with about 40 feet rise above the level of the
pump. The friction in the discharge pipe consists of 10 ells, 4 unions, 1 T, and $211 / 2$ inch Globe valves. The pump does not work very satisfactorily. I think that seam pipe, with 14 erenst The trough a 1 inch it up says it would ext no differently. I am now using 20 lbs . steam. A. An acrease in the size of th
ably be more beneficial.
(25) W. E. L. writes: We force water from a well 70 feet up to a tank by means of a Hooker pump.
It discharges into the tank from the top. If the pipe had entered from the bottom about 50 feet of pipe could have been saved, but it was thought by a friend that the pressure from the water in the tank would be too
great for the pump. I claimed it would be no greater great for the pump. I claimed it would be no greater
from itsentering the bottom, in fact not so great, unless the tank was kept full. In putting in the pump, nches, but the same as the discharge, and said it would be better if the suction was $1 / 2$ inch smaller than the discharge. This I claim was wrong, and that the suction should be
larger than the discharge. A. As you state the cases, re inclined to agree wit
(26) M. J. C. writes: Please explain the interior construction of the American steam gauge, or
how the steam acts on the interior so asto indicate the pressure on the dial: A. The pressure acts in a coiled elliptical tube, tending to make itround, and the end of
(27) P. R. writes: 1. I have an old electric battery. I wish to use it for giving shocks, sparks, and for heating small wires. Please tell mehow to connect and charge it. The battery consists of a rectangular
box (of vulcanized rubber) 12 inches long and 7 inches wide by 9 inches deep; divided into four compartments, two zinc and one carbon plate (6×8 inches) for each division, hanging on an insulated brass rod, with knobs
of the same metal on each end, resting in bearings at of the same metal on each end, resting in bearings at
$\begin{aligned} & \text { each end of the box. A. You can charge your battery }\end{aligned}$ each end of the box. A. You can charge your battery with a solution of bichromate of potash in water acia. lated with about one thirtieth of its weight of sulphuric
acid. Connect the two zincs of one compartment with the carbon plate of the next compartment so that one erminal of the battery will consist of two zinc plates and the other terminal will be a carbon plate. A wire connected with the two zinc plates is called a negative
pole, and a similar wire connected with the carbon pole, and a similar wire connected with the carbon plate is caled the positive pole or terminal of the bat
tery. Now if your zincs are thoroughly clean and the tery. Now if your zincs are thoroughly clean and the placed between the poles so as to be in circuit will become white hot. To give shocks you will need an induction coil (see p. 251, ScIENTIFIC AmERICAN of October 20, 1877), , having its primary coil in connection with the poles of your battery. 2. What kind of cement
shall I use to repair the box? There are some cracks in the bottom of it. A. Have the box thoroughly dry and clean, and fill the cracks wi
cement and pulverized sulphur.
(28) H. D. I. asks: What is the diameter of the disks in M, Trouvés moist battery, described in
the Screntific American of October 3,18779 A. They ade about 6 inches in diameter
(29) C. H. B. asks for instructions in pre paring paper for taking leaf photographs. A. Pase the
paper first through a solution of gelatin, 1 part in 20 parts of hot water, and use a strong solution of potassium bichromate; or the gelatin and bichromate may be used
together. Wash with hot water. A strong blue back-
ground may be produced as follows: Dissolve in 2 ozs. ground may be produced as follows: Dissolve in 2 ozs.
of pure water 120 grains of red prussiate of potash of pure water 120 grains of red prussiate of potash
(potassium ferrocyanide), and separately 140 grains double citrate of iron and ammonium in 2 ozs. of water; mix the solutions, filter, float the paper for a few minutes on the filtrate; print from the dried paper as
before and wash thoroughly in water. By adding a before, and wash thoroughly in water. By adding a
little phosphoric acid to the bichromate solution and little phosphoric acid to the bichromate solution and
exposing the print before washing to the vapor of a hot solution of aniline in alcohol, a blackish-green or red positive is obtained. Or, prepare the paper with so-
lution of iron sesqui-chloride, and develop after exposure with a very dilute solution of silver nitrate. Use plain photographic paper.
(30) J. B. N. asks: What is the method of proportioning pulleys of different sizes, so that the Draw vertical lines parallel to each other and an equal distance apart; these will represent the center lines of the width of the steps upon the cone. Draw at a right
angle to these lines and passing through about the center of their lengths a horizontal line, representing the axis of the cone pulley. Set the compasses to the ratersection of the end vertical line and the horizontal line used as a center, place on that vertical line a mark above and below the horizontal one. These two lines
will represent the diameter of the largest step. Set the will represent the diameter of the largest step. Set the
compasses to the radius of the smallest step required on the cone, and mark off in a similar manner the diameter of the smanlest step required on the cone. Take sections of the vertical lines at each end with the lines marked by the compasses, and then draw a line intersecting the intermediate vertical lines, and the intersections of the lines drawn from the straight edge with
the vertical lines wlll show the required diameter for the vertical lines will
(31) C. W. writes: A lubricant which I have been using, when it comes in contact with brass, turns it green. What is the cause? A. Probably the presence of a certain amount of moisture in the lubri-
cating oil, causing the brass to oxidize. cating oil, causing the brass to oxidize.
How can I make a conductor to draw off
tricity? A. Brush some gum water over the outside of tricity? A. Brush some gum water over the outside of a
base ball. When this is almost dry, roll the ball on gold leaf so that the ball will be covered with a smooth layer of gold; then mount the ball on a stick of sealing wax, setin a little wooden disk or base. Then on
one side of the equator of the ball insert five or six cambric sewing needles, so that they will be about 188
inch apart; these needles act as a comb to conduct the electricity to the gold leaf on the ball. from which the electric sparks may be drawn. In some establishments where leather belts are run at a very high speed, elec-
tricity is produced on the belts. If the conductor that we have just described be placed with its row of needles near to, but not touching, one of these belts, the electricity of the belt will be accumulated, and will mani-
fest itself in the form of the bright blue sparks, several inches in length, that pass from the conductor to the knuckle of the hand that is presented to it.
(32) D. J. K. asks: With what shall I oil a black walnut case? A. Raw linseed oil. Sometimes
a little turpentine is added, in the proportion of 1 gill to 1 quart of the oil.
(33) L. H. wishes to know what to line protect them from acid. A. Use paraffin wax, applied
(34) F. C. S. asks: What is the rule for calculating the change wheels for a compound screw cut-
ting lathe? A. Divide the pitch of the thread to be cut by the pitch of the lathe feed screw, and the product will be a proportional number. Then multiply the number of teeth in the lathe mandrel gear by the
number of teeth on the smallest gear of the compounded pair, and the product by the proportional number; then divide the last product by the number of the product is the number of teeth for the wheel to be placed on the feed screw. Or, if the sizes of two wheels are to be found, divide the number of threads
you wish to cut by the pitch of the feed screw, and multiply the quotient by the number of teeth on one of the driving wheels, and the product by the number of teeth on the other of the driving wheels; then any divi-
sor that will leave no remainder to the last product is the number of teeth for one of the wheels driven, and the product is the number of teeth for the other wheel
(35) M. D. V. asks: What is the best method of calculating the speed of pulleys, from large to small, and from small to large? A. The speeds of two
given wheels are in the proportions or ratios of their diameters. To find the sizes of wheels for a required
speed, multiply the speed of the driving wheel by its diameter and divide by the speed required by the driven wheel. The answer is the diameter of the driven
wheel. If two pairs of wheels are concerned, divide the speed you require the wheel to run by the speed (in revolutions) of the driving shaft, and the quotient will be the proportion between the revolutions of the driving shaft and the revolutions required. Then take any two numbers that will when multiplied together form a
sum equal to that proportion, and one of such numbers sum equal to that proportion, and one of such neys, and the other of such numbers
for the other pair of pulleys.
(36) F. K. R. asks: What is the composition used for melting brass to make it retain the size
of mould when cooling? I wish to cast the brass in an of mould when cooling? I wish to cast the brass in an
iron mould, and if it should shrink I could not get it out. A. We know of no composition in use for such a purpose.
(37) C. E. C. asks: What metal or combisheet lead tank to be used for storing nil of vitriol $\left(66^{\circ}\right)$? A. Use a solder of 1 part lead and 2 parts tin.
(38) R. H. writes: I wish to make a small I have constructed. I propose to make it 10 inches high
and $61 / 2$ inches diameter, and containing 5 one inch flues;
itis to be made of cast iron, flues and all. Metal is to be itis to be made of cast iron, flues and all. Metal is to be
$1 / 4$ Inch thick. Do you think such a boiler would answer my purposee I wish to generate steam with a thick to do so. Can you tell me of a better way to hulld a boilery A. We are not favorably impressed with your plan, and think it would be better for you to
build the boiler of wrought iron or copper. You could not conveniently use a lamp for generating steam in the oposed boiler
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the results stated:
A. E. A.-It is a zinc blende; silver is present in dogtooth spar and agate pebbles.-F. J. R.-No. 1. The quartz looks well and may be metalliferous; the sample is not notably so. No. 2.-The powder consists rides, sulphates, carbonates and silica organic matter, ammonia salts, phosphates, iron, and trace of fluorides. It is not of muchvalue. It is probably the residue from the evaporation of spring water -mineral water.-F. C. B.-The marked sample is an amorphous sand-principally silicic acid. The other is

COMMONICATIONS RECEIVED.

The Editorof the Scientific Ambrican acknowledges with much pleasure the receipt of original papers and Cuca or Coca. By C. H. E.
The Use of Petroleum as Fuel. By H. B. Centering for Arches. By P. I. 0.
A New Vehicle. By R. B. F.
A New Vehicle. By R. B. F.
The Use of Fuel for Steam Boilers. By W. S. C.
The Electric Light. By W. E. S.
HINTS TO CORRESPONDENTS.

HINTS TO CORRESPONDENTS.

We renew our request that correspondents, in referring
to former answers or articles, will be kind enough to name the date of the paper and the page, or the num to f the question.
Correspondents whose inquiries fail to appear should that, for good reasons, the Editor dedines them. The address of the writer should always be given.
Inquiries relating to patents, or to the patentability
of inventions, assignments, etc.. will not be publish of inventions, assignments, etc., will not be published here. All such questions, when initials only are given,
are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasis given.

orficial

INDEX OF INVENTIONS
Letters Patent of the United States wer Granted in the Week Ending February 5, 1878, AND EACK BEARING THAT DATE. A complete copy of any patent in the annexed list, furnished from this office for one dollar. In ordering, furnished from this offee for one dollar. In ordering, and remit to Munn \& Co... 37 Park Row. New York cit Advertiser, clock, J. F. We
Album, J. C. Koch, Jr.....
Animal trap, D. McGuire.............. Bale tyink machine, F. S. Heath
Bed clothes clamp, C. M. Bryson
Bee hive, J. Palmer.....
Binder, Shoemaker \& Dodswort
Binder, E. H. Thompor
Binder, E. H. Thompson (r)
Blind slats, J. G. Wilson ..
Blind stop, W. B. Surdam.
Book binding, J. S. Lever.
Boot jack, M. Ross.
Boring or broaching apparatus, J. J. J. Love.
Bottle stopper, W. H. Kelley,
Brake coupling, F. W. Eames.
Bulldings, facing for, G. B.
Buildings, facing for, G. B. Field
Builings, steam apparatus for, J. w. Faxon Burglar alarm, S. D. Lauffer.
Button fastening, C. E. Bates. Button or stud fastening. R.
Caddy, measuring, J. C. Reed
Can, metallic, C. P. Maxfeld. Car, megistering apparatus, R. McCully.
 Cars, safety guard for, Hardi Carbureting apparatus, M. D. Nelon. Cerriage, canopy top, C. E. L. Stevens... Chair, folding, E. G. Stanley Chimney cowl, C. E. Soelkey Cigar machine, F. Haehnel...
Cigar support, F. L. Oviatt. Cigar wrapper cutter, F. Haehnel...
Cloth shearing machine, A. A. For Clothes drier, L. C. Cattell .
Clothes pounder, F. A. Sumner
Clothes pounder,
H. Trumbull
Clothes pounder, G. W. Wood
Cock and faucet, C. Verniaud
 Colter, rolling, E. A. Sanders.
Combs, celluloid, J. W. Hyatt
. 200,013

Compass, A. P. Freshman ..
Condenser, mercury, c. E Livermore
Corset clasp, L. F. McNett.
Cotton, stowing, D. Hayes
Cotton, stowing, D. Hayes...
Culinary utensil, J. . W. Steel
Cultivator, J. M. Graves....
Cultivator, D. R. Raymond.
cuttoin for fure, E. G. Stanley
Door, sliding, S. Smith ..
Drains, trap for, J. Sargent
Engine, rotary, G. Evens
Engine, steam, J. G. Cooper

Engine, steam, J. Holub......................
Engines. bed plate for. A. A. Simonds
Exercising machine J. Preiss Exercising machine, J. Preis
Fence, barbed, \mathbf{W}. Warden.
Fence barbs,
Fence, barbs. applying, , J. W. E E
Fence post, W. H. H. Youngs
Ehce post, H. L. Gockley.
 Fire alarm, G. S. Shute (r)
Fire alarm, R. F. Bartel.
Fire alarm, R. F. Bartel..............
Fire arm, breech-loading, w. Field..
Fire arm, breech-loading, w. Field....
Fire escape, C. Richards.......
Fire extinguisher, F. C. Zapte
Fish catching device, J. A Mitchell. Flask for cooling liquids
Fruit,drying, J. Hyder.
Furnace, C. Bennett....

Glove fastening, G. Havell.
Governor, meter, W. N. Mi.
Governor, meter. W. N. Milsted
Grate, basket, H. T. Simons
Griddle greaser and holder, M. Nichols
Gun, machine, E. A. I
Hair crimper, I. Eann
Harrow, L N Norton.
Harrow, L. Norton..
Harrow, G. M. Titus
Harrow and clod crusher, J. W. Hagg
Harvester cutter, A. J. Bigelow
Harvester cutter bar, E. R. Whitney Harvester cutter bar, E. R. Whitney
Hatblocking andbanding machine, R. Eickemeye
Hat pouncing machine, G. Vule. Hat pouncing machine, G. vule.
Hatchet, J. C. Chapman....
Heater and steamer, meal, Curtis \& Ardrews .
Hides, etc., machine for scouring
 Horn cutting machine,
Horseshoe, E. Murraine Horsestace, E. Murraing device, S. Kepner
Hub, M. D. Golder............... Hydrant and street washer, J. B. . Fish
Ironing machine, W. \& J. Cutie Ironing machine, T. S. Wiles
Key for locks, G. Finley....
Knife cleaner and sharpener, C. A. Heegaard
Knife, A. E. Elmes
Knitting machines,
Ladder, step, M. Medart. Mell
Ladder, wire rope, A. Elton.
Lamp bracket, J. J. Nolan...
Lamp burner, L. J. Atwood.
Lamp reflector, P. Cavalier.
Lamp wick, w. D. Smith ..
Last, T. Dann...
Latch, M. Davenport.
Lathe chuck for turning stone, E. Rogers
Level, S. Gissinger
Lifting jack, F. S. Yinger.
Liquid measure,
Liquid measure, s. 3d \& C. . . Rigby.
Locks, tumbler for permutation
Locks, tumbler for permutation. J.
Loom temple, R. P. Pearson.......
Loom temple, R. P. Pearson.........
Lubricating compound, C. Johnston.
Lubricator, steam engine, Guild $\&$ C
Mandrel, forging. J. H. Alker
Mill, grinding, s. c. Schofer
Millstone pick, H. D
Mower, G. S. Peck.
Musical instruments, mouth piece for, J. G. True
Neck the, J. H. Fleisch
Neck tee, J. H. Fleisch
Observatory, aerial, N.
Oils, storing, etc., T. J. MeGarry (
Ozone generator, A. W. Sangste
Pan, frying, Edgar \& Bardell....
Paper box, J. W. Sprowles.......
Paper pulp, wood, W. R. Patric
Pavement W. H. \& H. M. Stow.
Pen holder, Hoffman \& Boman..
Piston, W. Sprague
Plane, J. B. Boyce..
Planter, W. M. Cary
Planter, J. V. Cloyd.
Planter, J. D. Pope
Plotting instrument, D. F. Hitt
Plow attachment,
Plow, P. Bouchet..
Plow, S. T. Fergus
Plow, w. H. Parlin
Pole sweep for vehicles, J. Ives
Postal card, M. Lee
Press for compressing cigars, F. X. Osburg
Pressure gauge, \mathbf{O}. W. Bayley...........
Projectile for heavy guns, R. Hadfild
Propeller, steering, T. F.
Pulley apparatus, A. Box.
Pulley apparatus, A. Box
Pump, air, W. S. Burgess
Pump, steam, J. Evans.............
Punch, conductor's, R. McCully
Rail way cattle guard, J. W. Street
Railway rail joint, J. B. Allen....
Rail way switches, signaling, S.C.Hendrickso
Railway tube, wire rope, W. Eppelsheimer..
Railways, tube for wire rope, W. Eppelshein
Rake, horse hay, W. Reno..
Ram, hydraulic, I. B. Milling
Ram, hydraulic, I. . B. Milling
Refrigerator, G. E. Acklom..
Refrigerator, J. D. Rasey.....
Rock-boring machine, A. Brand
Rooing, J. L. Boyer......................
Rule for making lines, w. V. Marshall
Rule for making lines, Waier.
Sash fastener, A. W. Lozer.
Sash fastener, M. McComb.
Sash fastener, M. McComb......
Saw, circular, J. K. Lockwood (r)
Saw set, J. F. Fieds
Saw set, J. F. Fields
Saw teeth, swage for,
Saws, hardening and, tempering, S. E. Farmer
Screw, wood, H. C. Stone....
Seed dropper, A. Vannorm.
Seed dropper, A. Vannorman.
Sewing machne cachachments, G. Rehfus
Sewing machine, straw, Blackburn \& Moeslein
Sewing machine, wax thread, J. H. Walker
Sewing machine, wax thread, J. H. Walker....
Sewing machine waxing device, M. H. Pearson
Sewing machine waxing
Shears, E. Van Noorden.....................
Shingle-packing machine, W. A. Bennett.
Shingle-sawing machine. W. J. Sherburn
Shirt and drawers, E. S. Bennett (r
Shoe, felt, Palmer \& Houghton (r)... Sinks, grease arreste
Slate frame, J. W. Hyatt..
Sle, boys', J. Y. Chapman
Spice
Slea, boys, J. W. Burger............
Spice box, T.
Spinning machinery, H. M. Williams
Spring, door, L. Threlfall.
pring, spiral R. Vose
Spring, spiral, R. Vose.......
Spring, vehicle, W. McCord.
Steaming table, Shaw \& Menz

200,014

[A copy of any of the above patents may be had by
remitting one dollar to MUNN \& Co., 37 Park Row, New remitting on
York city.]
English Patents Issued to Americans. January 28 to February 7, inclusive Boot and shoe heel.-G. B. Massey et al., N. Y. city.
Boot and shoe last.-W. Y. Edwards, Brooklyn, N. Y. Dieand plate press.-E. Hewitt, New York city. Forge, portable,-C. Hammelmann, Buffalo, N.
Friction clutch.-G. R. Clarke, Brooklyn, N. Y. Friction clutch.-G. R. Clarke, Brooklyn, N. Y.
Gas manufacture.-G. Ramsdell, Oswego, N. Y. Hay rake, horse.-E. D. Reynolds et al., Brockton, Mass. Pantaloons.-J. W. Davis, San Francisco, Cal. Propelling vessels.-J. Curtis et al., Middletown, Mo.
Pump, compressing and exhausting.-G. F. Blake, Bos Pump, compressi
ton, Mass.
Sewing machine attachment.-E. Wh
Shutter.-A. Bijur, New York city.
Sieve-G. W. Ketchum,
Sieve.-G. W. Ketchum, Newark, N. J.
Slate-dressing machine.-A. Auld, Jr., Cleveland, \mathbf{o}.
Spinning mule.-M. C. Patrick Lo Spinning mule.-M. C. Patrick, Lowell, M,
Stove, oil.-J. Dobinson, New York city.
Winn Water fllter.-R. S. Jennings et al., New York city.
Wood, preserving.-W. Thilmany, Cleveland, 0 .

MPETENTS
 , COPYRIGHTS
 Messrs. Munn \& Co., in connection with the publica-

 Mes the Scion of american continue to publicaImprovements, and to act as Solicitors of Patents for Inventors.In this lin
In this line of business they have had over thirty YEARS' EXPERIENCE, and now have unequaled facilities for the preparation of Patent Drawings, Specifications, and the Prosecution of Applications for Patents in the
United States, Canada, and Foreign Countries. Messrs. Munn \& Co. also attend to the preparation of Caveats, Trade Mark Regulations, Copyrights for Books, Labels, Reissues, Assignments, and Reports on Infringements
of Patents. All business intrusted to them is done with special care and promerate terms.
We se
We send free of charge, on application, a pamphlet containing further information about Patents and how
to procure them; directions concerning Trade Marks, to procure them;
Copyrights, Designs, Patents, Appeals, Reissues, In-
fringements, Assignments, Rejected Cases, Hints on the Sale of Patents, etc.
Foreign Patents.-We also send, free of charge, a
Synopsis of Foreign Patent Laws, showing the cost and method of securing patents in all the principal countries of the world. American inventors should bear in
mind that, as a general rule, any inventionthat is valumind that, as a general rule, any inventionthat is valu-
able to the patentee in this country is worth equally as much in England and some other foreign countries. Five patents-embracing Canadian, English, German, French, and Belgian-will secure to an inventor the ex-
clusive monopoly to his discovery among about clusive monopoly to his discovery among about one
HUNDRED AND FerTy milions of the most intelligent people in the world. The facilities of business and
steam communication are such that patents can be obtained abroad by our citizens almost as easily as at home. The expense to apply for an English patent is $\$ 75$; German, $\$ 100$; French, $\$ 100$; Belgian, $\$ 100$; Canadian, $\$ 50$.
Copies of Patents.-Persons desiring any patent
issued from 1836 to November 26,1867 , can be supplied with official copies at reasonable cost, the price de-
pendingupon the extent of drawings and length of pendingupon
specifications.
Any patent issued since November 27, 1867, at which ings and specifications, may be had by remitting to this office $\$ 1$.
A copy of the claims of any patent issued since 1836 will be furnished for $\$ 1$.
When ordering copies, please to remit for the same as above, and state name of patentee, title of inven-
tion, and date of patent.
A pamphlet, containing full directions Anited States patentaining full directions for obtaining Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patentee and mechanic, and is a useful hand book of reference for everybody. Price 25 cents, mailed free.

MONN \& CO.,

Publishers SCIENTIFIC AMERICAN,

