EVOLUTION

Professor J. S. Newberry, of Columbia College, lately delivered a lecture before the New York Academy of Science on the subject of "Evolution."
The lecturer took the opportunity of presenting to his audience a careful résumé of the various.shades of opinion of those who are arrayed in antagonism on this much discussed question. These were arranged under four groups.
The first, that represented by Mr. Darwin, who claim that all the complex and symmetrical forms of the fauna and flora, the animal and plant life of the present day, are and flora, the animal and plant life of the present day, are
derived from simple initial organic points, with the docderived from simple initial organ
trine of the kurvival of the fittest.
Secondly, those who follow the leadership of Dr. Charles Bastian, who go a step further back, and claim that the initial point of life developed according to the Darwinian hypothesis is a life germ produced from inorganic substances. Of this class are the materialists or Abiogenesists; while Huxley, Darwin, and the most distinguished of modern biologists are Biogenesists; that is, they disclaim any knowledge or comprehension of life, except as the progeny of pre-existent life.
Thirdly, the group of thinkers of which Professor Asa Gray is a type, who accept the theory of evolution as an ex planation of the method by which an inscrutable power has produced all the phenomena of creation. Its adherents see in the theory nothing inconsistent with the existence of a supreme Deity or with revelation.
And lastly, the class of which Professor Dawson, of Montreal, is the champion, who reject all forms of evolution as inconsistent with revelation and true science.
Professor Newberry next expressed his intention of stating some of the facts which geology offers to the sincere inquirer after light on this subject, rather than to advocate either one theory or another. In commencing this branch of the subject he observed that in past ages a series of rock formations has been made which inclose relics of animals and plants that lived in former times.
These series of rocks contain a more or less history of the changes which took place on the earth's surface through millions of years anterior to the advent of man.
The fossils of the Paleozoic and Mesozoic ages are about all extinct. It is only when we come to the Tertiary or Neozoic age that we meet with the remains of living forms. What we call our terra firma is really a type of instability, for under the constantly acting process of contraction, the crust of the earth is constantly being moved and folded, and that somewhat irregularily, so that in all ages some portions of the land have been going up, other portions down, and wherever the surface passed below the sea level the water would flow in and deposit upon it one or another of the kinds of sediment which we find in the series of rocks.
Sediments are still forming from the shells and skeletons of animals which inhabit the sea, and which in death sink of the bottom.
In each age
In each age there has been a subsidence of the land, which
has perimitted the sea to flow over and deposit over the sub has per̀mitted the sea to flow over and deposit over the submerged surface sediments which contain in greater or less numbers the remains of the animals and plants then living. This rock history is incomplete, because not all the forms of life which existed would be preserved, partly because many were perishable, and chiefly those that inhabited the seas or drifted into them would not leave any relics behind them. This history, though more complete than would be at first supposed possible, is confessedly defective, and has been but partially read. Great areas of the earth's surface have yet been unstudied by geologists.

While the subject is to be greatly illuminated by future discovery, there is very little probability that the general conclusions of paleontology will experience any important modification.
In tracing the appearance of the various forms of life upon the earth, Professor Newberry commenced with the mam-
mals, which began their existence, so far as we know, in the mals, which began their existence, so far as we know, in the Trias, but throughout the Mesozoic ages held an altogether subordinate and insignificant position.
The reptiles occupied the sea, the land, and the air, for they were swimmers, walkers, and fliers, the sea reptiles! resembling the whales as we know them, and the sea serpents as we imagine them to exist at present
The Professor next referred to the first bird so far as is known, the Archeopteryx, and described its form and those of
the flying dragons or pterodactyls of the Jurassic and the flying dragons
cretaceous periods
In the Tertiary, the vegetation was apparently more luxuriant and beautiful than that of the present day, for the grandest and most interesting of our living forest trees, the great Sequoias of California, the redwood and the mammoth trees, our tulip trees, magnolias, sycamores, and cypresses, are the lingering remnants of the magnificent
covered our continent even to the Arctic sea.
covered our continent even to the Arctic sea.
The Tertiary has been well named the age of mammals. Brute force then ruled the world; for man, its present master, had not yet appeared on the stage.
Duringthe ice period the climate of Greenland was brought as far south as New York, and broken sheets of ice held all Whole races of animals and plants perished, but those forms that were driven far south survived, and ultimately moved northward with the amelioration of the climate, and were attended by a new element in the history of the worldprimitive man.
Taking the geological record so far as it goes, Professor

Newberry pronounced it authentic and credible, containing no personal equations, but automatic and necessarily ing no personal equations, but automatic and necessarily
true. The progress of life upon the globe bore evidence, in his opinion, that it was the expression of a law; in other words, that it is the operation of forces as distinctively determinative as those which produce and guide the motions of the
heavenly bodies. The parallelism of the progress of life through the geological ages with that of the growth of an individual from a germ is so close that most students of paleontology are inspired with the conviction that the life forms of the different ages are links in a connected chain; in other words, that the later forms are derivations from in other words, that the late
those which preceded them.
This is evolution, and therefore most geologists are evolutionists, and they believe that evolution is not only exem-
plified in the progress of life, but that it is a law of nature plified in the progress of life, but that it is a law of nature. "We now come," said Professor Newberry, " to the question of questions-What is the cause that has produced the progress of life? One group of geologists, with Mr. Darwin, believes that external infiuences have alone produced b the diversity of animals and plants. Another group believe that the influence emanated from within the organism, and has been an essential feature in its life and growth. External circumstances have a most potent infiuence, as Mr. Darwin has shown; but we may well question the adequacy of the agencies he invokes to produce all the effects he claims for them. There are many facts which it is impossible with our present lights to reconcile with his theory."
Professor Newberry next indicated some of the difficulties which up to the present time have prevented him from accepting, in all its lengths and breadths, Darwinism as the theory of the Universe, and have compelled him to hold the law of evolution, not as a creed, but as a conviction.
There are the breaks in the chain of life, which, till hey are filled, forbid the cautious scientist to accept as demonstrated the derivation of the later forms in all cases from the earlier.
Professor Huxley explains the persistent types of life by saying that if the spontaneous variations of a species do has not been perpetuated , n or structure, thatiation has been hit upon. Upon this Professor Newberry remarked:
" To my mind this explanation is inadequate, because I cannot conceive that a highly organized animal with a complicated structure like the nautilus should pass through the evolutions of the globe without being more affected than it has been by external circumstances, unless the life that inspired it was more potent than all surroundings and gave it independence of circumstances. Thatexternal circumstances alone could produce such a symmetrical and continuous
development of organic forms, is something that with our development of organic forms, is something that with our
present knowledge seems to me highly improbable. Geology up to the present time has not a word to say as to the origin of man. The theory that we are descended from apes is a speculation indulged in, based on anatomical resemblances in the living animals. No ape-like man has been found fossil, nor any man-like ape. Remains of monkeys and of savage types of men have been found; but even the Neanderthal skull was of average capacity, and, as Huxley says, might have contained the brain of a philosopher No geologist professes to have proved anything like a connecting link between man and apes, and until such shall be discovered geology must be silent on the subject."
We fear that our readers on looking over this abstract of Professor Newberry's lecture will have a feeling of regret, that one so eminently capable of taking the highest views of this most important subject, should have almost confined is remarks to rudimentary observations and the antiquities
of the subject. fthe subject.
The history of evolution and the geological record are now known to every schoolboy, and it would appear that Professor Newberry must have had but a moderate opinion of the members of the New York Academy of Science, if he thought that a rehearsal of some of the first elements of eology, and an outline of the Darw
If those holding leading positions in the scientific world shirk the responsibility of clearly pronouncing their personal views upon subjects they voluntarily discuss before
learned bodies, it gives a color to the meretricious statelearned bodies, it gives a color to the meretricious statements of those who are now loudly proclaiming that scien tists speak with a suppressio veri.

New Inventions.

Mr. Jacob Leutzinger, of Hillsborough, Mo., has invented an improved Brake Block Holder for wagons, which consists of an arrangement of fianged plates, having interior projections for preventing the brake block from slipping, which are clamped together by bolts, and secured to the brake bar by a recess or lug.
A Device for Calculating Percentage, inteuded for lessening the labor involved in computing taxes and similar fixed percentages, consists of a table formed in radial columns. over which a pivoted indicator is moved, the arrangement being such as to show at once the amount of tax upon any given sum. This device is the invention of Mr. J. L. Knight, of Topeka, Kan.
In a new Animal Trap, invented by Mr. David McGuire, of New Garden, Mo., the cage slides upon a central upright rod, is detached and falls when the trigger, holding the bait, is actuated, and is kept from being lifted from the bottom of the trap by a spring catch.

An Ointment for use in skin diseases has been patented by C. J. Beattie, of Pueblo, Col.
Mr. S. A. Brumbaugh, of Harrisburg, Pa., has invented a Coupling for soft metal pipes and hose, which consists of a short tube, with ratchet threaded conical ends, which fit into the ends of the pipes to be coupled. A central collar has apertures to receive a spanner.
A Stirrup Supporter, the invention of Mr. L. F. Johnston, of Pocahontas, Ark., has a spiral spring, contained in a slotted rectangular case, so arranged that the stirrup straps pass over a sliding plate at the upper and movable end of the spring.
In a new form of Wheelbarrow, invented by Mr. Wm. Eckert, of Jersey City, N. J., each side bar is made of a continuous piece of angle iron twisted about one fourth of a turn at its forward end, in such a manner as to present one of its flanges for the reception of the bearings of the wheel, and the other for the support of the box of the barrow. Wooden handles are attached to the rear ends of the side bars.
Mr. Isidor Kann, of New York city, has invented a Hair Crimper, in which the bent wire or hair pin has a notch or loop formed in its bend to receive the eye of the binding wire and prevent it from slipping.
Messrs. A. Milne and A. Jourdain, of Newark, N. J., have invented a Watch Crown which dispenses with the usual brass core. It has an inner shell or section of suitable thickness, to which a steel socket is attached, and an outer covering shell.
In a new Shutter, invented by Mr. Asher Bijur, of New York city, the slats are adjusted at any inclination and retained in position without any visible slat rod. The mechanism is arranged on the inside of one stile of the shutter frame, and is thus protected from corrosion. The slats swing in end journals in a detachable frame, and motion is communicated by short crank arms connected by a rod and counterbalanced.
A Reversible Latch, consisting of a sliding bolt acted upon by a spring, and operated by a cam of the spindle ville, $\mathrm{N} . \mathrm{Y}$.
Mr. August Hoen, of Baltimore, Md., proposes to provide street lamps with Reflectors, which may be adjusted at various angles for defiecting and thereby utilizing the rays of light which would otherwise escape upward in an oblique direction.
Mr. Daniel Hayes, of New Orleans, La., has invented an improved Mode of Stowing Cotton Bales in the holds of vessels. The inventor proposes connecting the two opposite upper and lower surfaces of two adjacent bales by hooks and an adjustable chain, while under the pressure of the ack screw.
A Chest Protector, invented by Mr. G. F. Jackson, of Minneapolis, Minn., consists of a chamois pad, formed by the combination of a front and a back pad, to be used singly or in connection with an under vest of suitable material.
A Marking Device, intended to take the place of stenciling and brush marking, has been invented by Mr. W. T. Morgans, of Liberty, N. Y. The invention consists of a stock having a groove in its curved face for receiving types, together with suitable clamping devices for retaining the latter in place.
Mr. Martianus Ross, of Abilene, Kansas, has patented an mproved Bootjack, the essential features of which are the addition of a rigid heel piece at the rear end, to prevent the foot which holds the jack in position from slipping, and a rounded-off bow or toe piece, which bears on the toe of the boot to be removed.
A Window Blind Stop, invented by Mr. W. B. Surdam, of Fort Dodge, Iowa, consists in the combination, with the blind slats and their connecting bars, of pivoted levers arranged on the blind frame, and operating levers passing through the casing, in such manner as to furnish a secure locking device.
Patent No. 200,000, of the United States Patent Office, covers the claims of Messrs. Mortimer Shea and J. McC. Hamilton, of Nashville, Tenn., relating to an improved Carbureting Apparatus for enriching illuminating gas, mixing and thus diluting it with air in suitable proportions, carbureting air, and thus making gas from gasoline or other volaile hydrocarbons, and for other purposes
Mr. T. P. Magruder, of Rushville, Ill., has invented an improved Gate Latch, which is semicircular in form and provided with a lug through which passes a screw whose arrangement with reference to the latch guard, or other fixed abutment, adjusts the latch so that it will always strike on the bevel of the keeper, and thus enable the gate to latch easily when swung shut.
A new Temporary Binder, or file for letters, receipts, and other papers, has been invented by Messrs. J. W. Shoemaker and Samuel Dodsworth, of Leavenworth, Kansas. It has a combination of fixed vertical tubes, which hold the papers, and needles having transversely apertured heads, whose shoulders rest on the top of the tubes, while the shanks of he needles extend down into the tubes; these are arranged on a plate of suitable material, one edge of which is turned up at right angles to form a gauge for evening the papers.
Mr. C. C. Schwaner, of Winterset, Iowa, has invented an mproved Trace Carrier, which is claimed to prevent the eyes of the traces from being detached, and to be so arranged that the lines or tail cannot catch upon it, while the traces may be readily taken out of the carrier when they are to be applied to the whiffletrees.

Chief Justice Chase says: "Mount Uniou among the best, cheapest, and most progressive of Amer-
ican Colleges, rendering a thorough education in any Deartment accessible to all." Great improvements lately
nade, new Buildings under way. The College year of Spring, Summer, and Fall Terms, beginning last Tuesday
in February, May, and August each year, enables stu in February, May, and August each year, enables stu-
dents of either sex to earn expenses by teaching Winters, without losing time. Different students last year,
852; in 31 years, 13.648; property worth $\$ 537,869$, beneftting students. For new catalogue, address Pres. Harts-
horn, LL.D., Alliance, Ohio.

Fusitess atd Persont. The Charge for Insertion under this head is One Dollar Portable and Stationary Engines; Boilers of all kinds; Cortlan St., N. Y. E, Ely Iron Works, Erie, Pa. Wanted.-Ice Machine, 10 tons capacity in 24 hours.
т. Reagan, Carthage, Mo. A Solid Steel Nickel Pla
, with ratche attachment to be used wherethere is not room to revolve
the esweep, will be delivered free to any address in the
United States on receipt of $\$ 2.75$. Best Steel Bracket Saw Blades 10 c . doz. post paid. A. D. Brodie, 283 Sixth
Avenue, N. Y. Send stamp for Hustrated Circular Supplies for Telephone and other Electrical Experiments at manufacturers' prices. Adaress. with stam
Jerome Redding \& Co., 30 Hanover St., Boston, Mass. For Sale.-A Vertical Tubular Boiler, but little used,
2 in. diameter, 7 ft . high, 852 in. flues, chea pfor cash, or ill exchange for Iron Ploner. Wm, .

Alcott's Turbine received the Centennial Medal.

 Experienced Superintendent in Hydraulics, Steam prompt, systematic; wants position; any manufactur ng business, even as foreman; furnish plans; high cerA A.An American gentleman, established over 18 years in Paris, wishes to develop in Europe some American pat-
ent or special industry. Best references given and required. Address I. Gitz, 5 Petit Carreau, Paris, France Wanted.-A 2 d hand No. 1 Keystone Jeweler's Forg
with Hood. Address Kendrick, Davis \& Co.,Leba non,N.H. Friction Clutches warranted to drive Circular Log
Saws direct on the arbor; Upright Mill Spindles, which an be stopped instantly; Safety Elevators, and Hoistin aching. Din
Telephone Supplies.-All the parts but the diaphragm of a pair of Telephones, with instructions for complet
ing it, sent on receipt of $\$ 5$. C. E. Jones \& Bro., Cin., O Sperm Oil, Pure. Wm. F. Nye, New Bedford, Mass. Wanted.-To Correspond with parties building
Wheel Regulators. O. J. Bollinger. York, Pa. Blake's Belt Studs. The most durable Blake's B leather belts. Greene, Tweed \& Co.
Telephone Magnets. Electric Supply Co., Prov., R.I Wanted.-Parties to Manufacture a Im Improved Pipe
Coupling on Royalty. Illustrated in Sci. Am. Jan. 26,1878 . Improved Wood-workingMachinery made by Walker Bros., 73 and 75 Laurel St., Philadelphia, Pa
Walrath's Improved Portable Engines best in market; to 8 H. P. Peter Walrath, Chittenango, N. Y.
For Solid Wrought Iron Beams, etc., see advertisement. Addres

Lubricants, R. J.Chard, 134 M.Lane,N.Y
2d Fand Iron Planer built by Smith of Salem. Plane 13 Cornice Brike ${ }^{2} 300$. A.C.Stebbins, Worcester, Mass
Best Turbine Water Wheel, Alcott's, Mt. Holly, N. J. John T. Noye \& Son, Buffalo, N. Y, are Manufactursinds, and dealers in Dufour \& Co.'s Bolting Cloth. end forlarge illustrated catalogue.

Solia Emery Vulcanite Wheels-The Solid Origina Emery Wheel - other kinds imitations and inferior Caution--Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only Standard Belting, Packing, and Hose. B
The best is the cheapest. New York Beltit
ing Company, 37 and 38 Park Row, N. Y.
Steel Castings from one lb. to five thousand lbs. In-
valuable for strength and durability. Circulars fre valuable for strength and durability. Circulars free.
Pittsburgh Steel Casting Co., Pittsburgh, Pa. For Best Presses, Dies, and Fruit Can Tooks, Bliss \& Hydraulic Presses and Jacks, new and second hand. E. Lyon \& Co., 470 Grand St., N. Y.

The Niles Tool Works, Hamilton, $\mathbf{0}$., have
and Machine Tools in first class order for sale.
Wanted.-Second-hand Gun Stocking, and other Gun
Machinery. Address V. A. King, Lock Box 81, New Haven, Con
For the best Boue Mill and Mineral Crushing Ma-chines-five sizes. great va
$\&$ Sons, Philadelphia, Pa.
Machine Cut Brass Gear Wheels for Models, etc. (New
List.) D. Gilbert \& Son., 212 Chester St., Phila., Pa. Corliss Fngine Builders, with Wetherill's improvements, Engineers, Machinists, Iron Founders,
Makers. Robt. Wetherill \& Co., Chester, Pa.
Polishing Supplies of all kinds. Walrus Leather Wheels, all sizes and shapes. Greene, Tweed \& Co., N.Y
Wanted. - A party with some capital to conduct a frrst-class Woolen Mill at Fre
L. s. White, Baltimore, Md.
Skinner Portable Engine I
Skinner Portable Engine Improved, $21-2$ to 10 H. P. Fkinner Taps and Dies for Jewelers', Dentists', and Ma chinists' use, in cases. Pratt \& Whitney, Hartford, Ct Weldess Cold-drawn Steel Boiler and Hydraulic Tubes. Leng \& Ogden, 212 Pearl St., N. Y.
Diamond Saws. J. Dickinson, 64 Nassau St., N. Y.
Galvanized Iron Cornice Machines.-The most Im proved, Straight and Circular. Prices reduced. Calvin
Carr, Cleveland, O.,\& Hewes Machine Wks.,Newark,N.J.
For Power\&Economy,A lcott's Turbine,Mt.Holly,N.J
More than twelve thousand crank shafts made by
Chester Steel Castings Co. now running; 8 years' constant
useproves them stronger and more durable than wrought
iseproves them stronger and more
iron. See advertisement, page 174.

E. L. C. is referred to p. 396, Scientific American, December 22, 1877.-C. L. P.-As we under-
tand you, it does not appear to necessarly mater AmERICAN,
stand yon, it
difference. January 7, 1866, pp. 22, 23; September 29, 1877 Amicican anuary 7, 866 6, pp. 22, 23; September 29, 1877, pp. 195,
196; October 6, 1877, pp. 207, 212.-J. S. D.-See Screx TIFIC AmERICAN, January 30, 1875, pp. 64, 65.-D., F. \&
Co.-We do not recommend special manufactures in Co.-We do not recommend special manufactures Erican, January 19, 1878, under head of minerals.F. C., P. M. Co., and others.-We do notgive addresse February 2,1878, pp. 64, 65, 71.-C. B. M. - Write to the ebruary 2, 1878, pp. 64, 65, 71.-C. B. M.-Write to the
Secretary of the Navy and to the Congressman from our district.-F. L. should consult some standard
reatise on the subject. The explanation would require more space than we can give it in these columns There are tables in print complete enough for most Business and Personal " "column.-W. W. W. M.-It will e perfectly safe, if the old boiler is in good condition. F. L. can obtain explanations from the publishers.-
M. C. F.-Consult any modern arithmetic.-J. S. H. If youhave a chimney high enough to give a good
draught, we think you will find the proposed mode of draught, we think you will find the proposed mode of
setting satisfactory. - H. V.-From your account it setting satisfactory.--H. V.-From your account it ing orin the connections. A check valve, it tseems to
s. would be of no advantage.-W. P. R. will find the is, would be of no advantage.--W. P. in any good modern geography.-A. does not furnish sufficient data, but it appears safer to use
wrought iron for any pressure.-W. F. B. - You might wrought iron for any pressure.-W. F. B.- - ou might far as we can see.
(1) W. G. W. wishes to know how to get
id of cockroaches, A. A misture of red lead, Indian neal, and molasses will be eageriy eaten by them and will soon exterminate them. Paris green, phosphorus, or arsenic are sometimes used, but are very dangerous, will drive them away.
(2) J. R. B. asks: What is the method of keletonizing the leaves of ferns, etc.? A. These skel-blood-warm ware usualler natil the thin membranous parts have become sufficiently softened by putrefaction to be
easily washed out. Dip the remaining portion in a dieasily washed out. Dip the remaining portion in a di-
lute aqueous solution of sodium sulphite, and dry slow lute aqueous solution of sodium sulphite, and dry slow
(3) H. B. writes: In a recent article in the SIENTIFIC American concerning the Barclay stree fre, it is stated that a considerable quantity of chlorat of potash was stored in the building, and it occurs to found in the fact that a mixture of this salt with loaf hird suncomes explosive when it is acted upon by hird substance that has the property of liberating the
oxygen contained in the chlorate, as, for instance, sul phuric acid. The finer the particles, the more perfect
the union and more rapid the explosion. An investithe union and more rapid the explosion. An investiation into the articles commonly in use by confection capable of producing this effect. As two of these sub tances were present in the building this theory seem fully as plausible as those that have been presented, if not more so. A. True; but the third substance-a con-
centrated acid-was wanting. The hypothesis, as well s that involving undue friction in compounding th disposed of in the investigation
(4) B. W. asks: How can human skin be tanned? A. Either by the ordinary tannic acid bath or by the alum process. 1. Roll the clean skin up with convolution, cover it with water in a suitable vessel, and allow it to remain thus until the gelatinous tissues have become converted throughout. 2. Soak the skin in water, scrape off the epidermis, pass through and then
digest for 10 minutes in a boiling bath composed of lb. salt, 5.2 lbs . alum, and 6 gallons of water; then ad warm alum bath, and digest with the skins for a tay warm alum bath, and digest with the skins for a day o
more. The proportions are for 40 skins. The skins t be dried on stretching frames in the air, moistened wit water, rubbed, and after a few hours ironed.
I inclose a n illustration of a fountain in which (with-
out any apparent pressure) the water rises above it out any apparent pressure) the water rises above its
own level. Will you explain the reason? A. The prin-
 pends on the transmission of the pressure sustained b body of water in one vessel to that in another by means of the elasticity of the air.
(5) C. T. H. writes: I intend building ary room to dry animal scraps. Would it be better to good circulation of fresh air passing through the room, or should I have just enough ventilation to carry o
the damp vapors? A. Plenty of ventilation is best.
(6) C. H. S. asks: In what part of the arying room of a laundry shculd the ventilators for carrying off the steam (or rather the ev
laced? A. At the bottom near the floor
(7) J. W. asks: 1. Which is the stronge and will stand the weather better, a pressed brick or hand made brick? A. The pressed brick is the ommon brick, when equally well burnt. 2. Can a man lay as many pre
made brick? A. No.
(8) G. P. H. asks: Is it practicable to irri ate a tract of land lying about 100 feet above th evel of a river?. The land very gradually recedes from nelevated point, 200 feet from the river, where a re use to irrigate about 25 or 50 acres of this land? A. It is practicable to do so, but before the kind of pump
and size can be determined, it will be necessary to
have some further data, as, first, the kind of soil; sec ond, the amount of ra
the crops to be raised.
(9) A. S. writes: My dwelling house is sitnated on the most elevated point of my farm, the
ground sloping gently therefrom on all sides; ground sloping gently therefrom on all sides; at a dis-
tance of about 900 feet from my house a small creek never-failing the farm, which is mostly fed by thre am about excavating for, and having a small fish and ice pond, of about 80×200 feet, and from $21 / 2$ to 6 feet in
depth, constructed in such a manner that all the springs depth, constructed in such a manner that all the springs will flow directly into the pond, while the rain water of
the creek will flow past. In the attic of the house are the creek will flow past. In the attic of the house ank
two tanks holding about 20 bbls. each, besides another tank holding about 15 bbls., which is used for supplymoder house with hot and with waterfrom the cisterns by a force hand pump, and works very satisfactorily, and with but little labor. The op of the two large tanks is about 38 feet above the fround about the house, and this surface is about 40 also about constructing a small fountain in front of my house which I intend to supply with water from these tanks. What is the best, the cheapest, and the most satisfactory mode of filling the tanks with water
from the pond, so as to keep the fountain playing from the pond, so as to keep the fountain playing
least during the spring, summer, and fall months? will further add, in case a ram should be suggested hat a fall of 3 feet can be obtained for a distance 0 feet in distance; but I doubt very much whether that would be sufficient fall for the work required, and besides in very dry seasons, although the springs never
fail, yet they get very low, and will probably not yield fail, yet they get very low, and will probably not yield
more than a barrel an hour each. A. By setting the ram in a pit in the ground, the requisite descent for he supply pipe can be obtained, provided a low point ram will then throw the water to the required distance arge evation, if you provide pipes of a sufficiently
ar the purpose. Let the orifice in the ram be enlarged to 2 inches in diameter, and the pipes be of the same size. Sometimes two rams are set
connected by proper valves to the same pipes, so that connected by proper valves to the same pipes, so that
one may be repaired without stopping the supply of
(10) S. S. asks: What is the largest gun evermadie? A. The 100 ton guns made in England for
he Italian navy are the heaviest thus far, but still rger ones are projected.
(11) J. W. M. asks: Can a locomotive, on a connection 100 yards long as easily as by the ordinary coupling; and can an engine drive a circular saw, dis rom it? That is, does distance add resistance? As we understand your question, neglecting the weight and rigidity of the lengthened connection, there will
(12) A. A. G. asks: What is the most sucng, when laid in the ground? A. Galvanizing, we (13) J. F. asks: What will be the effect on boiler of water containing 19 grains of sulphate of lime and 2 grains of vegetable matter to the Imperial
gallon? A. Scale will be formed, unless you purify the water.
(14) C. A. S. writes: Suppose a cannon ball were fired out of a cannon in a vertical position;
when it attained the height reached by the force of unpowder, would it return to the earth at the sam
(15) E. P. C. writes: The water in a boiler of a high pressure tugboat was blown off the other
day, washed and filled up the next day, and just as the freman started the wood in one furnace and was going to start the other, he heard a report as if something ad given away inside the boiler, and when he investi-
gated the matter he found a crack in one of the side sheets about 14 inches long, taking in three socket hrowanylight on the only two years old. Can you
A. We judge, from your account, that the mischief was done when the boiler was blown down, by allowing it to cool too rap-
idly, and was developed as soon as the iron was reidly, and
heated.
(16) M. M. C. writes: 1. Is there not some hing wrong a bout the following formula for flywheel $w=\frac{m g \Delta \mathbf{E}}{v^{\prime 2}}$ If $v^{\prime 2}$ is taken to mean the square of the velocity of the rim in feet per minute, it gives an or a minute, the reverse is the case. A. The velocit in the formula referred to is in feet per second, and th formula, we think, gives correct results when rightly
applied. 2. Does Rankine's "Manual of Applied Mechanics "give examples of the practical application of is formulas to the construction and designing of ma chinery? A. Rankine's "Applied Mechanics "simply
shows the manner of determining the various formulas. The applications are given to some extent in his
"Machinery and Millwork" and "Treatise on the "Machinery a"
(17) F. S. M. asks: Has common gun or in any other directio a tendency to throw up tha in any other direction? A. We imagine the tendeñcy
is to throw in any direction in which the resistance to
(18) I. H. P. writes: I am desirous of con structing a counter fountain, to play beside my soda
fountain, and niot having aqueduct water I will have to ppeal to you for instruction. I see an automatic coonwith sufficient force. I want a jet to play under a bell ringing noise which makes such fountains so attractive A. By using a reservoir of compress.
tain as powerful a jet as you desire.
(19) W. E. writes: Please inform me of a practical method of mixing plumbago with molten copdo not know what is put in with it to fasten it. I have the metal at all. A. Heavy pressure pambaso affect more efficacious than high temperature.
(20) W. H. W. asks: How can I remove a boiler (locstone and man from the tubes of my boiler (locomotive type)? A. Some forms of scale can
be softened and washed out by allowing the water to remain in the boiler, after the fire is hauled, untilit is quite cool, and then running it out. Other kinds of
scale are so hard that the only practical means of reval is by taking out the tubes.
(21) E. J. M. asks: How can I construct a sarometer? Must I use alcohol, and what other sub-
stancemust I use in conjunction with it that will rise and fall in the glass as the changes in the atmosphere ccur? A. Mercury is the liquid ordinarily used in barotmospheric pressure, and would be inconveniently high if alcohol was employed. You can purchase accurate mercurial or aneroid barometers of a dealer in scientific instruments, or may try the plan described in (22) H. L. writes: Two tanks stand side by side and connect through a short pipe. A pipe descendsfrom each 12 feet, and each pipe enters an iron ox in the stove. The tanks are filled with cold water, and by means of pipes and box a complete circuit of water in the box is heated, and hot water pes up one of the pipes to the tank. What gives the hot water a tendency to one pipe rather than the other? One philosopher answers the question by saying that one pipe enters the box at a higher level than the other. That
does not quite satisfy me. A. We think it probable oes not quite satisfy me. A. We think it probable that the philosopher's vie
the facts are as he states.
(23) H. C. M. recommends that B. P. L. (p. 140, current volume) try the following, to stop the
leaks in his skylight: 20 parts white sand, 2 parts litharge, 1 part lime; mixed dry and then with boiled limseed oil. Our correspondent states that this mixture will set very quickly and make a hard cement.
(24) W. H. C. writes: I have a Selden steam pump; diameter of cylinder 8 inches, stroke 8
inches, bore of water cylinder 3 inches, $3 / 4$ inch live steam pipe, 1 inch exhaust, $11 / 2$ inch suction pipe, 15 feet long; it discharges through 11/2 inch pipe about 70 eet, with about 40 feet rise above the level of the
pump. The friction in the discharge pipe consists of 10 ells, 4 unions, 1 T, and $211 / 2$ inch Globe valves. The pump does not work very satisfactorily. I think that team pipe with 11 orcher ted trough a inch it up says it wida ext differently. I am now using 20 lbs . steam. A. An increase in the size of the discharge pipe would prob-
(25) W. E. L. writes: We force water from well 70 feet up to a tank by means of a Hooker pump.
It discharges into the tank from the top. If the pipe had entered from the bottom about 50 feet of pipe could have been saved, but it was thought by a friend that the pressure from the water in the tank would be too
great for the pump. I claimed it would be no greater great for the pump. I claimed it would be no greater
from itsentering the bottom, in fact not so great, unless the tank was kept full. In putting in the pump, nches, bu the same as the discharge, and said it would be better if the suction was $1 / 2$ inch smaller than the discharge. This I claim was wrong, and that the suction should be
larger than the discharge. A. As you state the cases, are inclined to agree wis
(26) M. J. C. writes: Please explain the interior construction of the American steam gauge, or
how the steam acts on the interior so asto indicate the pressure on the dial? A. The pressure acts in a coiled elliptical tube, tending to make itround, and the end of
(27) P. R. writes: 1. I have an old electric battery. I wish to use it for giving shocks, sparks, and for heating small wires. Please tell mehow to connect and charge it. The battery consists of a rectangular
box (of vulcanized rubber) 12 inches long and 7 inches wide by 9 inches deep; divided into four compartments, two zinc and one carbon plate (6×8 inches) for each division, hanging on an insulated brass rod, with knobs
of the same metal on each end, resting in bearings at of the same metal on each end, resting in bearings at
each end of the box. A. You can charge your battery each end of the box. A. You can charge your battery with a solution of bichromate of potash in water aciay lated with about one thirtieth of its weight of sulphuric
acid. Connect the two zincs of one compartment with the carbon plate of the next compartment so that one erminal of the battery will consist of two zinc plates and the other terminal will be a carbon plate. A wire connected with the two zinc plates is called a negative pole, and a similar wire connected with the carbon plate is called the positive pole or terminal of the
tery. Now if your zincs are thoroughly clean and the connections well made, a very fine shred of platinum placed between the poles so as to be in circuit will become white hot. To give shocks you will need an induction coil (see p. 251, Scientific American of October 20, 1877), having its primary coil in connection with the poles of your battery. 2. What kind of cement in the bottom of it. A. Have the box thoroughly dry nd clean, and fill the cracksw
(28) H. D. I. asks: What is the diameter of the disksin M, Trouvés moist battery, described in
the Scientific Ambrican of October 3,1877 A. They made about 6 inches in diameter.
(29) C. H. B. asks for instructions in pre paring paper for taking leaf photographs. A. Pasa the of hot water, and use a strong solution of potassium bi chromate; or the gelatin and bichromate may be used

