RICE.-.-HOW IT IS PREPARED FOR MAREET.

by colonel c. k. huger, of charleston, s. c.
When the rice is ready for the harvest, it is cut by hand about 12 inches from the ground, and laid across the stubble for two days to cure. It is then tied into sheaves and put into small cccks in the field to more thoroughly dry. After a few days it will be ready to be carried to the barnyard, where usually the thresher is situated, and put into stacks where it remains until the owner is ready to thresh it out. In some localities it is only removed from the fields daily in sufficient quantities to supply the thresher, which is almost always a frame building, one and a half stories, with high shingle roof, filled with the necessary machinery for sepa rating the rice from the straw. The usual motive power is steam, the boiler and furnace of which should be placed out side the main building and encased in brick. The smoke stack is frequently of brick, at least forty feet high, and placed at least fifty feet from the building, with an under ground flue running to the furnace. This is the best and safest construction; but sometimes it is not practicable, and then an iron smoke-stack is substituted, and when that is the case the main building and boiler house should both be covered with metal, and the exhaust steam not allowed to be vented into the smoke-stack, as it causes to be thrown out volume sparks, not only endangering buildings, but also by. This evil is supposed to be obviated by placing a spark arrester in the smoke-stack; but the experience of practical machinists is that they cannot be recommended as safe, and therefore should be avoided. The speed of the different portions of the machinery is not great; the smallest sized
beater, which is the thresher that takes the grain from the beater, which is the thresher that takes the grain from the
straw, revolves not exceeding 600 per minute, and the largest 250, and of course sizes between these at proportion ate rates. The speed of the fans varies from 100 to 300 per minute; therefore, if ordinary attention is paid to oiling the machinery, there should be no fear of fire from friction. As threshing should only be done by daylight, and noarti ficial light allowed in the building at any time, there will be very little danger of fire; but, as the whole is of an inflammable character, if fire once gets under way the loss will most probably be total. Therefore, as fast as the rice passes through the thresher it should be removed to a storage barn, at a sufficient distance to make it comparatively safe in case of a fire occurring in the thresher, and should be kept there no longer than is necessary to accumulate a vessel load, when it should be sent to market to be sold at once as rough rice
or stored in mill until the owner desires to have it pounded and sold as clean rice. The straw, which is separated from the grain in the thresher, is by machinery delivered outside the rear of the building, and should be removed as fast as it accumulates to a safe distance from the thresher.
This rice straw is a good forage for animals, and valuable as a fertilizer for high land crops; but where it is not wanted for such purposes, it is much used for fuel in the furnace, and in the vicinity of Savannah, Ga., a considerable amount is used in a paper factory, as it is found to be valuable in the mañufacture of that article, which is then frequently turned into "genuine Havana cigars." When it cannot be plantation, and the ashes applied as a fertilizer to the land.
Rice pounding mills are of two classes as to fire hazard. First, the mills on plantations, which are nearly all two story frame, shingle roof buildings, and next, the mills in cities, which are usually three and sometimes four story brick, with slate or metal roofs, but all run by steam, with
furnace and boilers bricked up outside of building, and con: furnace and boilers bricked up outside of building, and con: taining the same kind of machinery.
The city mills generally have warehouses adjacent to them, as the storage capacity of the mill itself is rarely sufficient for its wants. These mills are always located on some navi gablestream, so as to be easy of access to vessels for the de livery to them of the rough, and the receipt from them of the clean rice. When rough rice is sent to mill to be at once
pounded, elevators are lowered into the hold of the vessel, and the rice taken out and carried into the mill by horizontal screws, and at once elevated to the highest floor, and run through screws which take out' all rubbish, such as bits of stick or straw, and sand. It then passes slowly into large millstones, six feet in diameter, revolving 120 per minute and set so as not to break the grain of rice, but to cause the hull to split off. From the stones it passes through a fan, which blows the hull or chaff into an apartment, from which it discharges itself by a spout to the outside of the building, and is at once removed. The rice is carried from the fans to bins over the mortars. These mortars hold about four bush els eacfí, and are made of wood, egg-shaped, large end down, lined with Russia iron. The pestles are pieces of timber 8 x 12 inches, ten feet long, shod with a heavy iron boot, and are lifted by arms from the pestle shaft in rear, and dropped
about thirty inches into the rice in the mortars. This poundabout thirty inches into the rice in the mortars. This pound-
ing continues from one to two hours, according to quality of grain, which reduces to flour a skin or coating that was left on it by the stones. It is then emptied out of the mortars and carried by elevators to the upper part of the mill, and passed.through screws, which take nearly all the flour off. It is agsin elevated to upper floor to screws which separate
it into three qualities-whole, middling, and small-and then passes to the brushes. The brushes are cylindrical wooden drums, varying from two to three feet in diameter, and in length from six to ten feet. They are placed on end, the
this plan was adopted, the spindles could not be got at while working, and have been the cause of fires. This drum is covered lengthwise with strips of sheepskin, wool side in, about six inches wide and eighteen inches long, backed on one side only to the drum, each slip lapping a little the one adjacent to it. The cylinder is then enclosed by a wire screen firmly screwed in position. The rice from the fans passes between the wire screen and the skins. The brushe when working revolve, the largest 300, and the smallest 45 per minute. This motion causes the loose edges of the skin to fly off and rub the grain against the wire screen, driving any flour onit through the screen, and polishing the rice. A it is brushed according to its grade of whole, middling, or small, as previously separated by the screens, it so passes by spouts to tierces prepared for its reception, standing each on a platform to itself,'so arranged on a shaft underneath as to give them a slight jerk up and down, which packs the grain as it falls into the tierce. As soon as it is full, it is removed, the head put in, branded, and rolled into the shipping shed, ready to be sent to market. This completes the process of milling. The speed of the different parts of the machinery is, with slight variations, as follows: Pestle shaft, 12 revolu tions per minute; millstones, 120 ; brushes, from 300 to 400 according to size; fans, from 100 to 300 , according to size elevators, 40. It is therefore evident that there should be n
danger from friction, if ordinary attention is paid to lubricating. The rough rice, and nothing that comes from it during the process of pounding, is at all infiammable, but, on the contrary, is slow of combustion; but as these mills work at night, carelessness in the system of illuminatio should be avoided. All lights should, as far as practicable be fixed, and no hand lamps allowed, except lanterns fully protected under glass; and where coal gas is not used, lard or whale oil should be. In case of a partial loss, the great est damage would be from water, as fresh water softens the grain so much that, if saved from heating and sprouting, it never recovers its original firmness, and is therefore very seriously deteriorated in value; and if with salt water, it soon becomes as offensive as decayed flesh, and is valueless.
These mills are costly, and generally pay well, and every precaution is used by those in charge to protect them from accidents; but still they are classed as extra hazardous, and some companies, particularly the English, write only very small lines on them, or decline them altogether. This I can only attribute to a want of knowledge of the risk. The writer has been familiar with the rice interest of South Car olina for over thirty-five years, and can remember the burn ing of only three pounding mills in that
The particulars as to speed of machinery, and much othe valuable information, have been kindly furnished me by two of the most experienced practical millersin the State.

THE KEELY MOTOR DECEPTION.

The Keely Motor lunatics are still at work, according to the Philadelphia Times. The " directors" it is said, held a ne by the reporter of the above paper is as clear as mud
"The machine is made of wrought iron and cast steel It consists of spheres, basins, standing tubes and small reservoirs, with a wilderness of connecting rods, valves and tiny copper tubes. A globe of cast steel, four feet indiame ter on the outside, holds only twelve gallons. The center cavity is in a shell of nine inches thickness. The perpen dicular tubes that reach from floor to ceiling, at the other end of the machine, have a central chamber of three inches diameter, the surrounding metal being three inches thick, and outside of it , one above the other, are huge rings of wrought iron shrunk upon the pipe. The copper tubes appear to be one fourth and one half inch in diameter, but the aperture in their center is not large enough to admit pin head."
Mr. Keely made nine tests, and with $\frac{5^{5}}{80}$ suspension of the water column and 10 lbs air he produced $11,000 \mathrm{lbs}$. pressure to the inch, and had to shut off the pressure because the gauge would not stand more. The condensing apparatus into which the vapor is discharged is a cylinder that holds three gallons of water, and so strongly bolted and barred that it looks as if made for the discharge of a twenty inch projectile. Its design is to reduce the vapor, the force of which has just been used, to water, for use over and over again in the working of the machine. The Times representative had an opportunity to test the quality of the water introduced into the machine from the hydrant and that in the
condenser after its power had been used. He drank a pretty good quantity from each cylinder and found it cold, and free from any foreign taste, such as would probably be caused by explosive powders. He had a chance to breathe the mysterious vapor while the wonderful pressure was upon the tubes. It was discharged into his hands, his eyes, and mouth. It was perfectly cold and dry. Within a month, when he has made all his experiments with his now com pleted machi
In his talk with the Times representative Mr. Keely said This is a new substance; a new force, altogether unknow to science; I don't pretend to be the inventor; I discovered it by accident. I could work this machine up to ten thousand horse power if the metal would hold. I shall certainly work it upon a two hundred horse power engine soon. The
nine feet long, two feet wide and three feet high in its high est part), is the most powerful machine ever constructed. It was built for us by Mr. Willard of Bordentown, who was drowned a few days ago. It is a quart machine-that is to say, it uses only a quart of water. With the condenser that have now nearly complete I will make that quart of wate produce a thousand horse power motion of sufficient duraion to run a steamship across the ocean.'
One of the directors said: "We have been laughed at and called cheats and impostors, but out of the original company who joined in raising the $\$ 120,000$ already expended upon this invention only three or four have withdrawn. We are the original crowd, and we don't think of weakening. In a month or two now all Mr. Keely's tests will be finished, and we will show the world whether he is the greatest inventor or the greatest humbug of this age. Scientists, machinists, and learned societies are invited to come and make every test they can think of.
The purport and substance of all the foregoing bosh is we suppose, that the Keelyites are short of funds and are about to make a new effort to shove off upon the unwary another batch of their worthless stock.

EBURINE

M. Latry has recently exhibited to the French Society for the Encouragement of the National Industry a new com pound, to which the above name is given, and which is com posed of ivory or bone pulverized, and in some cases mingled with agglutinative material. The latter is not, kowever uniformly necessary, as by M. Latry's process the dust can e caused to agglomerate by simple pressure and heat. The operation is rather a difficult one, as too high a temperature produces disaggregation; but by experiment M. Latry has succeeded in so regulating the heat applied to the mould by observing the behavior of wafers of fusible metal, that instead of a porous and almost friable mass the resulting product is extremely hard and resistant. It is believed that the natural organic material in the bone or ivory dust be comes partially melted, and so serves as a cement.
The color of the eburine is a grayish-white; and to make it pure white, suitable pigment is added. This, however necessitates the further addition of a little albumen or othe gglutinative material, as already noted. The material may be colored any hue, and is best utilized in combination wit the so-called " bois durci," or wood concrete, which is made of sawdust and beef's blood pressed also in moulds unde heat. The eburine serves for the raised portion of ornamen tation of furniture, etc., and when moulded with the " bois durci," adheres to it with great firmness. It does not crack, and when not rendered too hard may be worked with ordinary wood tools. The grain of the hard variety is so fine that by suitable coloring it is easily made to imitate certain stones, such as jasper, malachite, and lapis lazuli, or by painting beautiful and accurate imitatrons of cameos an mosaics may be produced upon it. The invention appears to be of considerable industrial importance, as it opens a new mode of utilizing waste products, for which hitherto there has been comparatively little employment.

ENGINE "SPURTS."
There are numerous instances of collisions and othe marine casualties on record, from which it would appear tha the danger might have been avoided had there been some means on board the injured vessels for developing a sudden and great increase of power in the engines for a brie length of time. A long and heavily laden steamer, for ex ample, is not easily mancouvred even under full stean power, and when moving at high speed it is a matter of considerable difficulty to check her way. Similarly a heavy war vessel, in order to avoid torpedoes, may find a means of suddenly swerving, backing, or shooting ahead a potent safeguard against suddenly discovered obstacles.
M. Bertin proposes a simple means of effecting this object, which merely involves providing each vessel with a blower, by which strong jets of air can at a moment's notice eforced in at the base of the smokestacks in order to in rease the draft. This has recently been tested in France on board the frigate Resolue. Combustion was found to be nearly doubled in activity under the transitory action of the jets of compressed air. The motive power developed was qual to 1.8 times the primitive po.wer of the engines; and the increase of consumption of fuel was 20 per cent. This ast is of no importance, however, in view of the necessities the case and the brief period over which the augmented power would in most instances be excited.

Borax Varnishes.

It is well known that an aqueous solution of borax is able to dissolve shellac, forming a knnd of varnish, to which any desired color can be imparted by mixing with pigments. Major Dr. Kahl of Dresden has communicated to the Dres den branch of the Saxon Society of Engineers the results of a large series of experiments made with these varnishes. He reports that they are very cheap and dry very quickly, but they scale off from wood too easily. When this var nish is colored black with india ink and applied to paper, it possesses a fine gloss, but other colors, especially carmine when muxed with this solution acquire an impure shade, and many pigments cement together in this solution, forming a hard and totally useless mass. The black shoe polish sold for ladies' boots is often made by adding some black pig ment to this shellac solution. For bronze boots, rosaniln may be dissolved in any alcohol varnish.

The Probable Distance of the Sun.
A particularly good opportunity of determining the distance of the sun, by observations of the planet Mars at its opposition, occurs in August and September of the present year, the planet being aboat that time in perihelion, or nearest the sun in its eccentrically elliptic orbit, within a fort night of its being in opposition to him from the earth. The result of this is that in the early days of September, Mar approaches us to within a distance of about thirty-five mil lions of miles. Advantage will be taken of this near approach to obtain a value of the solar parallax and distance and all astronomers wish good-speed to Mr. David Gill, who is now proceeding to the Island of Ascension for that pur pose, taking with him an excellent heliometer belonging to Lord Lindsay, and made use of by him in observing at Mau ritius the transit of Venus over the sun's disk, in December, 1874. With this instrument, Mr. Gill proposes to make ob servations of Mars and neighboring stars for comparison, when east and west of the meridian, so as to deduce the par allax of Mars from its parallactic change of position in the interval, owing to the diurnal rotation of the earth. Thi method has been suggested before, and partially carried out (but not sufficiently to obtain a reliable determination by it) at the last favorable opposition of Mars, in 1862. That opposition, however, was utilized very fully in another way, by making a large number of meridian observations of the planet at stations in both the northern and southern hemispheres, so as to give parallactic displacement at different
places, instead of different times. The most complete displaces, instead of different times. The most complete dis-
cussion of all these observations was made by Professor cussion of all these observations was made by Professor
Newcomb, of the United States Navy, and published by him as an appendix to the Washington Observations for 1865. The final result he arrived at from them was the value $8^{\prime \prime}$
.855 for the solar parallax. We will compare this with that 855 for the solar parallax. We will compare this with that
obtained by the transit of Venus. The observations made of the transit in 1874 have not yet been fully reduced, and it would be premature to make use of them till the reductions are completed. The last preceding transit of Venus was that of 1769 , about some of the observations of which there was, for a considerable period of time, a misunderstanding, which led to their being supposed to give a much smaller parallax and larger distance than was fairly deducible from them. This was particularly the case with regard to the observations made at Otaheite (or Tahiti) by Captain Cook and Mr. Green, as was satisfactorily pointed out in 1868 by Mr.
Stone, now Astronomer-Royal at the Cape of Good Hope. His improved reduction of all the observations of duration of transit in 1769 gave $8^{\prime \prime} \cdot 91$ for the solar parallax; and we may reasonably give this a weight of half, in combining it with the result obtained by the opposition of Mars in 1862 to conclude what may now be considered the most probable value of the sun's parallax and distance. Such combination gives for the parallax the value $8^{\prime \prime} \cdot 873$; and as sun's distance
$=$ earth's equatorial semi-diameter (i.e,, $3962 \cdot 5$ miles) \times cotangent equatorial horizontal parallax, we thus obtain 92 , 112,600 miles for the present most probable mean distance of the sun. It will be interesting to see how this agrees with the value to be derived from the last transit of Venus and the forthcoming opposition of Mars, when the reductions of both are completed.-King's College Magazine.

Japanese Fans.

The folding fan is a Japanese invention. Even to this day the fan forms an integral portion of the national costume of Japan, and plays a large part in the every day life of that country.
An almost fabulous number of fans are exported from Japan to all parts of the world; no fewer than $3,000,000$ fans, valued at $\$ 90,000$, were shipped from Hiogo and Osaka in 1875. Osaka is the principal city for the manufacture of the " ogi," or folding fans, which are almost exclusively those exported, all descriptions of the bamboo kind being made there, the figures, writing, etc., being executed in Kiyoto.
The principle of division of labor is carried out a long way in this branch of industry. The bamboo ribs of the fans are made by private people in their own houses, and combinations of the various notches cut in the lower part are left to one of the finishing workmen, who forms the various patterns of the handles according to plans prepared by the designer. In like manner the designer gives out to the engravers the patterns which he thinks will be saleable, and, when the blocks have been cut, decides what colors are to used for each part of the design, and what different sheets used for each part of the design, and what differ
are to be used for the opposite sides of each fan.
are to be used for the opposite sides of each fan.
When these sheets, with the sets of bamboo slips which are to form the ribs, have been handed over to the workman, he, in the first instance, folds them so that they will retain the crease. This is done by putting them between two pieces of heavily oiled paper, which are properly creased. The fans are then folded up together, and placed under pressure. When sufficient time has elapsed, the sheets are taken out, and the mould used again, the released sheets having been packed up for at least twenty-four hours in their folds. The ribs, which are temporarily arranged in their folds. The ribs, which are temporarei
order on a wire, are then taken and set in their places on one order on a wire, are then taken and set in their places on one
of the sheets, after it has been spread out on a block and pasted. A dash of paste then gives the woodwork adhesive powers, and that part of the process is finished by affixing the remaining piece of paper. The fan is folded up and opened three or four times before the folds get into proper shape, and by the time it is put by to dry, it has received an amount of handling which Japanese paper alone would endure. When the insides are dry, the riveting of the pieces
together-including the outer covering-is rapidly done, and a dash of varnish quickly finishes the fan.
The sale of fans in the olden time in Japan seldom exceeded 10,000 for the whole country; times have changed however, for the foreigner has set foot there, and the old days of seclusion and limited trade are over. The number of fans ordered for the Philadelphia Exhibition alon mounted to over 800,000 , at a cost of about $\$ 50,000$
The designs for the mounts of Japanese fans are sometimes
of a very interesting description, and always strikingly unlike the productions of European art. One peculiarity of the art of Japan has been pointed out by a recent critic. If a Japanese artist has any space to adorn, he does not seek out the center and place his ornament there, for although that would be the obvious means of securing proportion, it would not satisfy a taste directly derived from a study of would not satisfy a taste directly derived from a study of We find, therefore, that the Japanese artist, imitating the We find, therefore, that the Japanese artist, imitating the
ways of nature, throws his design a little out of the precise balance and trusts to the spectator to judge of the result by an association of impressions similarly derived.-Harper's.

Resistance of Wires.

This is a subject on which several series of researches have been made, but the results have been discordant. Thus MM. Becquerel, Siemens, and Matthiessen, with comparatively good agreement, have found in the case of copper, silver, gold, iron, and platinum, a diminution of re sistance through annealing. M. Mousson, on the other hand, in the case of steel wires hardened by extinction, also ob tained a decrease of resistance through the softening; but in steel wires, which were hardened by drawing, as also in copper wires, he got an increase of resistance through an nealing.
With a view to explain this discordance, and to examine the behavior of a large number of metals, M. Chwolson, of the St. Petersburgh Academy, has investigated the action of softening through annealing (either by means of a strong electric current or a gas flame) on the galvanic resistance of hard-drawn wires of 15 different metals-namely, platinum, platinum-iridium, palladium, aluminum, aluminum-bronze, ron, steel, copper, brass, German silver, zinc, silver, lead magnesium, and cadmium. The last of these gave no distinct results,whereas, in the case of all the others, the question was answered unequivocally. We will not here furthe describe M. Chwolson's method, but merely give the results of the measurements in the following table, in which under A is represented the maximum of the observed change of the resistance in consequence of the first glow; under B the maximum of the resistance-change at a strong glow; and under \mathbf{C} the greatest change of the resistance at extinction, all explained in percentage of the original existence of the hard drawn wires:

Wire. A.	B.	c.
Steel. 4.8 p.c.	+8.6 p.c.	+0.6 p.c.
Iron -0.4	$+5.3$	+0.7
Brass -8.3	+0.8	$+1.0$
Copper........... -2.9	$+1 \cdot 4$	$+0 \cdot 4$
Platinum...... * - $5 \cdot 3$	$+5 \cdot 8$	+0.7
German silver. . $-1 \cdot 1$	+2.0	$-1 \cdot 8$
Aluminum bronze -8.0	--.--	+2.7
Palladium....... -0.4		+0.1
Platinum-iridium. $-3 \cdot 2$	-	+0.3
Silvercopper alloy - 11.3		$+1.7$
Zinc -1.8		
Aluminum.. -1.9		
Lead............. +0.5		

We see from this table that, in the case of twelve out of thirteen metals, the galvanic resistance is diminished in the softening of the wires in consequence of the first not very strong glow; only lead forms an exception, showing a slight increase. On increased and strong glow, six metals showed a distinct increase of the resistance; conse quently an effect opposite to that of the softening. This double action of glow, in the case of some wires-for example, iron-where the decrease through softening is slight, and the increase through increased glow is strong, can only be observed by very carefulmeasurements. That the second action is not simply to be attributed to an oxidation of the wire, is shown clearly by the high value obtained for platinum (with strong glow the resistance again rose above its original amount), and the comparatively very small value found for brass and copper. In extinction of the wires in water, lastly, nine out of ten metals showed an increase of
the resistance, and only brass (German silver?) showed a the resistance, and only brass (German silver?) showed a considerable diminution of it.
The double action of annealing here demonstrated suff ciently explains the contradictions in the results of previous investigators. - Der Naturforscher.

Inventions Patented in England by Americans.
 CARDING ENGINE.-R. F. Barker (of Boston, Mass.). Manchester, Eng.
DRYING FREITs, ETC.-A. J. Reynolds, Chicer DRYING FRUITS, EETC.-A. J. Reynolds, Chicago, 111 .
ELECTRICAL MACHINE.-T. A. Edison, Menlo Park, Electrical Machine.-T. A. Edigon, Menlo Park, N. J.
 FURNACE.-W. Stewartetal. Paterson, N. J.
Hop PICING MACHINE-H. Hop PIcEING MACHINE.-H. G. LLocke, Waterville, N. Y. RALIWAY CARRIAGES.-E. P. Kellogg, New York city. Rock Drils. - A. A. Goubert et al., New York city. Separating Precious Metals.-A. A. K. Eaton, Brooklyn. N. Y
Signaling.-J. L. Plimpton (of New York city), London, Signaliing -J. L. Plimpton (of New York city), London, Eng.
Spinning Rings.-F. Rabeth Providence, SPINNING MACHENERY.-JOhn Good, Brooklyn, N. Spring Matresss.-T. L. Snyder, Montclair, N.J. TOP Notohes.-H. A. Lugrin et al., New York city

Notice to Patentees.
Inventors who are desirous of disposing of their patents would find it greatly to their advantage to have them illustrated in the Socientiryo Amer
ican. We are prepared to get up first-class woo marin tions of merit, and publish them in the Sousvraic Amentoan on very reasonable terms.
We shall be pleased to make estimates as to cost of engravings on receip of photographs, sketches, or copies of patents. After publication, the ats become the property of the person ordering them, and will be foun value for circulars and for publication in other papers.

NEW MECEANICAL AND ENGINEERING INVENTIONS

improved pipe coupling.

Rufus H. Moss, Salem, Oregon.-The object of this invention is to pro vide a coupling for uniting pipes used in conveying hot air for heating cars, that may be quickly coupled and readily uncoupled. It consists of a cylin erattached to the end of the pipe that conveys the heated air. In this fits the cylinder, and is packed to insurean airtight joint. A spring presse lits the cylinder, and is packed to insure an airtight joint. A spring presses and retain the collar of the coupling to be united. The parts of the coup ling are alike on each end of the car, and when the parts on adjacent car are united, the catches of one parts engage the flange of the other. Th tube and flange move longitudinally in the cylinders, as the cars move oward or from each other in running, and when the couplings are de ach

ROLLERS.

Henry Wilde, Manchester, Eng.-This invention consists in a method of securing a sufflient amount of adhesion between the iron and deposited copper surfaces to enable the roller to withstand the various engravingan
other operations without the separation of the metals. For this purpose the iron roller, before receiving a coating of copper from a hot cyanide so lution of copper, is heated to a temperature ranging from 150° to $212^{\circ} \mathrm{Fab}$ by plunging it into boiling water, or by other means. The roller, after re ceiving a fllm deposit of copper from the cyanide solution, is then transferred to the bath containing a sulphate solution of copper, where eceives one or more thin coatings of copper. These coatings are subjected tonsiderable pressure by the action of a burnishing roller of hardene ontact with the iron and detecting any want of adhespon between the two metals. The burnished coppered roller is then replaced in the bath of sulphate of copper solution, and subjected to the action of the electric current until the desired thickness of copper deposit is obtained. Attempta ave been made from time to time to substitute iron rollers covered wit thin layer of copper by means of electricity for the solid copper roller ased in calico prining, and in other processes; but, owing to the expense in the reguline state, such attempts have not hitherto been commerciall in the reguli.
uccessful.
improved folding gratila for windows
Calvin T. Steckel, Brooklyn, N. Y.-This invention is intended as a sub stitute for the fixed iron gratings or bars in basement, store, and othe the room more cheerful, and facilitating the cleaning of the windows etc while combining, when locked, the same degree of safety as the bars, an is a combination of a folding lazy-tong shutter with a fixed and slotted hinge of the window casirg, to fold and torn the shutter. The folding shutter is burglar-proof, furnishing the same protection as the fixed grat ing, but giving, in addition thereto, the great convenience of opening them during the dey, and presenting a neater appearance without the objection able features of the rigid bars.
improved canal locomotive.
Gabrielle De Nottbeck, New York city.-This inventionhas for its object the construction of a locomotive which win practically run in a canal, the rails or track being laid upon the bed of the canal, and the body of the
locomotive raised above the water and mounted upon standards, to which the driving and transporting whels ore aplied. Conal boats have bee propelled by means of locomotives or traction engines which run on the sides of the canals; but the power in such instances was oblique to the length of the boats, and the resistance was very great; but this locomotiv is designed to run in a canal, and in a direct line with the boat which draws. In practice the body of the locomotive will be entirely out of the water, and
of a boat.

mproved leather crimping machine.

Jason Smith, Charlestown, Mass.- This invention consists in the arrange-
ment, in a suitable frame, of a tree or form rigidly supported by standards ment, in a suitable frame, of a tree or form rigidly supported by standards attached to a crossbar of the frame, and in plates that slide in grooves in the standards, one upon either side of the tree, and carry wedge-shaped o sists in a clamping device for clamping the leather, and carrying it down over the tree, and in smoothing plates for pressing the leather smoothly upon the tree, and in levers and screws for operating the various parts.
mproved balanced valve.
William Hardwick, Erie, Pa.-This invention relates to certain improvements in balaced sist mainly in the arrangement of a stuffing box through which the bolt connecting the parts of the valve passes, and the arrangement of spring in connection with the bolt and the two parts of the valve for the purpose of holding the latter in proper position.

NEW MISCELLANEOUS INVENTIONS.

IMPROVED CURRTCOMB.

Thomas D. Bennett and Horace B. Moody, Harrisonville; Mo.-This in-
ventionrelatesto an improved currycomb for horses, andconsists of rotary ventionelatesto an improved currycomb for horses, andconsists of rotary The crossbar may be plain or provided with teeth on upper side, to serve as a mane and tail comb. The rotary combs raise the hair and admit the station
skin.

mproved toy buzz.

James B. Wells, Cincinnati, O.-This invention has relation to a toy known as a "whirligig;" and it consists in a thin circular plate or disk sapid rotation is given to the disk a whistling sound is produced. This to
sur will be struck out of very thin sheet metal, and scraps of tin may be utilized for the purpose.

IMPROVED BRUSH.
Randall Bisbee, New Yorkcity.-The object of this invention is to im-
prove the construction of metallic brushes, so as to enable them to be prove the construction of metallic brushes, so as to enablethem to be made lighter and neater, and adapt them to receive any desired kind of a back. Wires take the place of ordinary bristles, and are placed through rubber plate, with their heads resting against the inner side of the plate.
A leather plate is placed over the heads of the wires, and between them

