Srientifir Smprican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.

published weekly at

NO. B'Y PARK ROW, NEW YORK.
-. D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copp, one year, postage included...
One copy, six months, postage included
Clubs.-One extra copy of The Scientific American will be supplied gratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. ${ }^{*}$ Postage prepaid.

The Scientific American Supplement is a distinct paper from the Scientific American. THE SUPPLEmENT is issued weekly; every number contains 16 octavo pages, with handsome
cover, uniform in size with ScIENTIFIC AMERICAN. Terms of subscription
 10 cents. Sold by all news dealers throughout the country.
will be sent for one year, postage free, on receipt of seven dolarg. Both papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& CO., 37 Park Row, N. Y.

the Subscription

Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the time for which they have prepaid. Before the time indicated expires, to insure a continuity of numbers, , subscribers should remit for another year.
For the convenience of the mail clerks, they will please also state when their subscriptions expire.
New subscriptions will be entered from the time the order is received; lut the back numbers of either the SCIENTIFIC AMERTCAN or the SCIEN-
TIFIC AMERICAN SUPPLEMENT will be sent from January when desired tific American supplement will be sent from January when desired.
In this case, the subscription will date from the commencement of the In this case, the subscription will date from the commencement
volume, and the latter will be complete for preservation or binding.

VOL. XXXVII., No. 8. [New Series.] Thirty-second Fear. NEW YORK, SATURDAY, AUGUST $25,1877$.

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT, INO. 86,
For the Week ending Angust 25, 18 7\%.

 III.

V. MATURAL MISTORY, BIOLOGY. ETC. A Biographical Sketch of an

Remit by postal order. Addres
MUNN \& CO., PUBLISHERS,
37 Park Row, New York.
Single copies of any des
address on receipt of 10 cents.

DEAD WEIGHT IN RAILWAY CARS.

To the student of railway economy the subject of dead weight in cars tends to call up something more than a com-mon-place discussion. It was one of the subjects brought up at the meeting of the Master Car Builders' Association, but the members were reticent in expressing their views and to offer suggestions. It was considered by some that to increase the size and carrying capacity, especially of freight cars, would produce the result of decreased weight, but the committee to whom the subject was referred did not feel qualified to advise, and did not unanimously recommend such a change. They did say, however, that timber and iron is used in excess of strength. They thought by a careful selection of timber as to quality, and a careful judgment of its proportions, together with the same selection in regard to iron, associated with good and careful workmanship, lighter cars equally as serviceable could be produced. Proportions of materials and good workmanship were especially descanted upon. In experience the only parts of car frames brought to notice in which proportions had been reduced were window posts and roof carlines. The former had been made two inches thick, but had been reduced to one inch and one eighth. The service and life of the reduced proportions was declared equal to the former. Roof carlines had formerly been made two inches thick and now were made only one half that thickness. Iron carlines used to support monitor roofs were formerly made $2 \times \frac{5}{8}$, but were now made $2 \times \frac{8}{8}$.
In conclusion, the committee advised to not materially lessen the bottom timbers, but they thought that above the sill an excess of timber and iron had been employed. They advised to discard all unnecessary timber and use skeleton construction in all places possible. For inside work, where strength was unimportant, wood as light as could be obtained should be preferred. One of the main things to be borne in mind was to place timbers of all kinds so that it should be strong in the direction of the strain, and to reduce the thickness as much as it would bear and do the service equired.
In the discussion that followed, it was thought by some that it would be economy if box cars were increased in size and made so as to carry a load of fifteen or sixteen tons. If
this could be done by only adding five hundred or two thousand pounds to each car as now constructed, it would reduce the number of cars per train, and also be advantageous by bringing the weight hauled nearer the power that moves it. In a report of an experiment made of a car that had been constructed with increased length and capacity, of twentyfive tons, and loaded with that weight, the result was the springing of the axles about three sixteenths of an inch.
It was thought that nearly all of the car bodies, as now made, would easily carry fifteen tons, but it was a settled conviction that the ordinary axle would not bear the load. There were not enough of standard axles in use to justify the variation of the old rule of ten tons as a load for a car. It was thought that if fifteen tons was to be made the maximum of load, in addition to strength demanded in axles, the drawhead timbers and framing of the trucks must be strengthened and more securely fastened.

PENS, INK, AND PENCILS.

Some little excitement has of late been created among the manufacturers of and dealers in stationers' wares by the introduction of pens, sold under the name of "miraculous pens," "cold water pens," etc., which by simply dipping the pen in cold water will enable one to write without the use of an inkstand.
The first instance that we find of this class of pens is that shown in the English patent No. 3,946, of 1873,, which describes a pen made of thin plates overlapping each other, beween which is to be placed "ink paper," or the plates are to be coated with "chemical matters" that will, when dipped in water, produce fluid ink; but the methods of preparing the "ink paper" or the "chemical matters" are not given.
Another pen of this class was patented in this country by L. B. Bertram, Nov. 14, 1876, No. 184,319 (who also has an English patent for the same, No. 3,187 of 1874). This pen has a barrel so shaped as to receive and hold a "cartridge" of solid ink, the ingredients of which are not stated.
A third solid ink pen was patented in this country by Leon Fargue, June 12, 1877, No. 191,950 (patented in France Aug. 30, 1876), and is sold, we believe, by Faber, under the name of the " miraculous pen." It is, however, simply an ordinary pen having its concavity filled with solid ink prepared of coloring matter derived from coal tar products mixed with any sufficiently adhesive substance, such as gum, honey, glucose, or glycerin.
The pens sold under the last patent are being extensively introduced into the market, and are therefore imitated by other manufacturers. One of these imitations, prepared with ink of various colors, we find sold with a printed slip bear ing the words: "Inks patented, March, 1865," but the only ink we find patented in "March, 1865," is that described in
the patent 46,684 , which is for the use of one of the salts of aniline, known as " rosine," for making red ink. Nothin is said in the specification about solid ink, or of any other color than red. There is also another solid ink pen sold having stamped upon it, " Pat'd 13th Dec'r, 1870," which patent upon examination, proves to be for a peculiar form of foun tain attachment, and has nothing to do with solid ink.
Within the last three or four years several inkstands pro-
vided with solid ink have been introduced under the name
described, with an illustration, on page 306 of vol. 30. The use of solid ink in this manner was not new at that time, but simply a revival of an old idea, as an inkstand to be filled with solid ink is described in the English patent, No. 4,435 of 1820, and the following recipe is given therein for a suitable ink: 8 ounces of honey, 1 yolk of egg, $1 \frac{1}{2}$ pints extract of galls, 3 ounces gum arabic, 1 ounce sugar candy, 1 ounce indigo, $\frac{1}{2}$ pint decoction of logwood, 2 ounces lampblack, 2 ounces willow wood charcoal, 3 ounces sulphate of iron, and ounces blue galls in powder.
Another English patent, No. 8,175, of 1839, describes a solid ink prepared as follows: A thick paste is made by pouring a decoction of Campeachy wood upon 3 drachms of catechu, 1 drachm of extract of hœmatoxylon, 10 grains of acetate and hydrate of deutoxide of copper, 1 scruple of sul phate of alumina and potash, 1 drachm of gum arabic, drachm of sulphate of protoxide of iron, and a variable quantity of sulphate of indigo. This paste when dried may be cut into blocks of suitable shapes and sizes, which, when dissolved in water, will form a good ink varying in color ac cording to the amount of indigo employed. To make a semisolid ink there should be added from a half to one drachm of sugar or molasses to the above compound.
Besides these English patents, we find one granted in this country to J. B. F. Jud, of New York, Feb. 10, 1874, No. 147,384, for writing inks of various colors in the form of pastes, from which the following formulas are extracted:
"To prepare my improved concentrated black ink, tak 4 parts of bichromate of potash, pulverized, and mixed with 25 parts of acetic acid, 50 parts of liquid extract of logwood $\frac{1}{4}$ part of picric acid, 10 parts of pulverized sal sorrel, 10 parts of mucilage, and $\frac{1}{4}$ part of citrate of iron, and mix well. The liquid extract of logwood is prepared by mixing 3 parts of an extract of common commercial quality with two parts of water.

My improved red ink is prepared by taking 1 part of red niline mixed with 10 parts of acetic acid, 5 parts of citric acid, and 25 parts of mucilage, all well mixed. For use, mix 1 part of the paste with 16 parts of water.
'My improved blue ink is prepared by taking 2 parts of aniline blue mixed with 10 parts of acetic acid, 5 parts o citric acid, and 40 parts of mucilage, all well mixed. For use, mix 1 part of the paste with 8 parts of water.

My improved violet ink is prepared with the same in gredients, in the same proportions, as blue, with the differ nce that violet aniline is used instead of blue aniline

My improved green ink is prepared by taking 1 part of aniline blue, 3 parts of picric acid mixed with 10 parts of acetic acid, 3 parts of citric acid, and 80 parts of mucilage. For use, 1 part of this paste is mixed with 8 parts of water
'To prepare my concentrated copying ink, take 6 parts of pulverized bichromate of potash, mixed with 10 parts of acetic acid, and 240 parts of liquid extract of logwood, and add a pulverized mixture of 35 parts of alum, 20 parts of sal sorrel, and 20 parts of mucilage. Mix well. For use, 1 par of this paste is mixed with 4 parts of hot water."
These inks are described as leaving no sediment, as drying quicker on paper than the ordinary inks, and as being noncorrosive.
As connected with this matter of pens and inks we may mention that, after considerable litigation before the Patent Office authorities, extending over two years, a patent was issued June 26, 1877, to C. Walpuski, of Yonkers, N. Y., for n indelible or copying pencil, of which the writing made with it can be as readily copied as if written with copying ink Indelible (not copying) pencils have long been known and patented both in this country and in Europe. The English patent, No. 2.316, of 1858, describes a compound for indeli ble pencils designed for marking clothes, etc., which con sists of 1 part of wax, 1 part of hard stearine or spermaceti, 2 parts of powdered plumbago, and 1 part of vermilion These ingredients are to be heated and ground together to form a base, to 1 part of which is to be added 3 parts of itrate of silver.
Another English patent, No. 2.771, of 1859, gives seven different compositions for making indelible pencils, as fol lows: 1st. Nitrate of silver, anhydrate of potassa, carbon, and olive oil; 2d. Caustic potassa, nitrate of silver, steatite, car bon, and olive oil; 3d. Caustic potassa or soda, nitrate of silver, fuller's earth, steatite, carbon, and olive oil; 4th Caustic potassa, nitrate of silver, talcose slate, carbon, camphor, and olive oil; 5th. Anhydrate of potassa, iodine, oxide of lead or litharge, vegetable carbon, steatite, pipe clay, and camphor dissolved in oil; 6th. Anhydrate of potassa, iodine carbon, nitrate of silver, steatite, pipe clay, fuller's earth and camphor dissolved in oil; 7th. Carbon, steatite, fuller's earth, nitrate of silver, iodine, caustic potassa, and oil saponified, oil of tobacco, and neat's foot oil.
On May 31, 1859, an American patent was granted to E. P. Clark for an indelible pencil for marking clothes, made by dissolving 1 oz . of glue in $1 \frac{1}{2} \mathrm{ozs}$. of water, and adding oz. of nitrate of silver, 6 to 10 drops of nitric acid, $\frac{1}{2}$ oz. of lampblack, and $\frac{1}{8}$ oz. of brown sugar.
The same inventor obtained another patent July 10,1866, for a different compound for the same purpose, made by melting 1 part of nitrate of silver in a crucible, to which is added about $\frac{1}{8}$ part of black lead, and from $\frac{1}{4}$ to $\frac{1}{2}$ part of calcined gypsum. A small quantity of lampblack or asphal tum may be added or wholly omitted.
Another compound for an indelible pencil was patented May 14, 1867, to S. C. Pruden, which consisted of 1 oz . of alum, 1 oz. of sugar, $\frac{1}{4}$ oz. of gum arabic dissolved in water,
much lampblack as will be found necessary to make the red heat, are ready for insertion in the wooden blocks to compound of the required degree of blackness. Instead of cut into pencils.
the lampblack, any other suitable coloring matter may be used, according to the colored pencil it is desired to produce. From this time the Patent Office records appear to show no patent in this line, until the English patent No. 4,090, of 1874, was issued to J. L. Petit, for a copying pencil compound of aniline dyes, mixed with powdered plumbago or colored chalks, cemented together by gum water, dextrine, or other adhesive matter soluble in water. If preferred, the adhesive matter may be omitted and the compound united by pressure in dies suitable to form it into sticks of the ne. cessary form for pencils.
The next patent granted for a copying pencil was No. 4,473 , of 1874, issued to Jensen (for Dr. Jacobson of Bavaria), which describes a compound of two classes of substances, one insoluble in water and the other soluble. The first may be as follows: Sulphuret of antimony, graphite, metallic powder, or other suitable base, 10 parts; tannic acid, 7 parts; peroxide of iron, 2 parts; and dextrine, 1 part. The second may be made of graphite, 5 parts; violet of aniline, 4 parts; and dextrine, 1 part. These ingredients may be mixed with as much acidulated alcohol as will dissolve the soluble part of the mixture, then steamed off until dried, next pulverized, and finally pressed in hot moulds to form suitable sticks for pencils.

During the year 1875, we find four English patents relating to this subject. Nos. 178, 440, 460, and 1,236; but the first three of these have only provisional specifications and are rather meagre as to details. The first (J. L. Von Faber's) describes the use of four compositions of various degrees of bardness, ranging from 52 parts of aniline, 39 of graphite, and 9 of kaolin, for a soft pencil, to 25 parts of aniline, 25 of graphite, and 50 of kaolin, for a hard one. The second provisional specification (J. Flackfield's) gives a compound of wax, aniline, clay, and white of egg or albumen. The third (H. Volmer's) mentions "chemicals and black lead," without further description. The fourth on the list is the patent of F. Wirth, a communication from G. Schwanhausser, who obtained an American patent October 26, 1875, for the same invention. The following is the mode of preparing pencil compounds given in this patent: Simmer 10 lbs . of
logwood chips in 100 lbs . of water until one tenth has evaporated. Strain and heat again to boiling point; then add rated. Strain and heat again to boiling point; then add small quantities of the nitrate of oxide of chromium until
the bronze precipitate that first appears has again dissolved with a deep bluish-black color. The liquid should be next evaporated to the consistency of syrup. To six or seven parts of this add two parts of finest elutriated fat clay and a small quantity of slime of gum tragacanth. Other coloring matter may be substituted for the logwood.
The next patent is that issued to C. Walpuski, above referred to, who, in the course of his litigation before the Patent Office, proved his invention to antedate all of the above patents on copying pencils. His compound consists of 100 parts of aniline dissolved in alcohol and water, 50 parts of white clay, and 10 parts of a solution of gum tragacanth. It is stated that any other suitable coloring matter that will give a copy may be substituted for the aniline.
For the benefit of those of our readers who are not familiar with the subject of pencils and their manufacture, we may state that the ordinary pencil is filled with a preparation of graphite, commonly called black lead or plumbago, both of which are misnomers, as there is no lead or plumbum in it. Until quite lately it has been considered by chemists as a carburet of iron, but it is now generally acknowledged that, although it shows traces of iron, this metal is only mechan ically mixed with it-there being no chemical combination between the two.
Pencils were originally filled with square sticks cut from blocks of graphite found in the famous Borrowdale mine, in Cumberland, England, which contained the purest ever found, but on the exhaustion of that mine the impure materials to be found elsewhere were pressed into service, after proper purification. The process adopted by the Dixon Company at Jersey City, who use a graphite found at Ticonderoga, N. Y., is as follows: The graphite is first ground fine in water, treated with sulphuric and nitric acids, and, after washing clean, heated to a bright red. Then it is mixed with sufficient water to make it run freely and allowed to pass slowly through a series of tanks arranged in steps, until the water leaves the last one of the seriesalmost clear, having left the graphite deposited and graded in the tanks-the deposit in that nearest the overflow, being the purest, is used for the finest pencils. The graphite after being taken from the tanks is dried, and then mixed with pipe clay obtained from Rotterdam, Holland, which has been purified in the same way as the graphite, only the very finest being used for pencils, as the coarse can be utilized in the manufacture of crucibles. Upon the amount of clay used depends the hardness of the pencil-the more clay the harder the grade-about 7 parts of clay to 10 parts of graphite, by weight, forming a medium. The clay and
graphite is thoroughly mixed with water and ground like graphite is thoroughly mixed with water and ground like
paint, but is passed repeatedly through the mills, as many as twenty-four times being considered as necessary for the twenty-four times being considered as necessary for the
finest grades. When ground sufficient the pasty mass is inclosed in a canvas bag, and the water is squeezed out by a powerful press, leaving the compound in the form of a stiff dough, which is placed into a cylinder of a forming machine, and, by means of a piston driven down by a powerful screw, is forced out at the bottom of the cylinder in the
form of "leads" that, after being heated'in a crucible to a
cut into pencils.
The blocks are formed by sawing the wood into pieces as long as a pencil, six times as wide, and half the thickness, which are afterwards run through a planing machine that not only smooths them but cuts in each block six grooves half the thickness of the "leads." In the grooves in one block the leads are laid, a second block previously coated with glue is laid on the first, and a pile of these compound blocks are placed in a press, where they remain until dry. The blocks are next cut apart into six pencils each by passing through a machine like a moulding machine, having two sets of cutters operating on opposite sides of the blocks, each of which cuts half way through the wood. The cutters in these machines are so accurately arranged and run so true that when the pencils leave the machine there is no mark to show the line of separation from the block other than the joint of the two pieces of wood inclosing the lead, and are said to be so smooth that sand papering would roughen them. The shaping machine turns out about 72 per minute, or over 43,000 per day. The pencils are then varnished or colored by another machine, at the rate of 120 per minute, or 72,000 per day; and then polished in another machine at the rate of 106 per minute, or over 63,000 per day-all by unskilled labor.

SOME NEW INVENTIONS NECESSARY FOR FUTURE

 ASTRONOMICAL OBSERVATIONS.Persons who have never seen a first-class astronomical ob ervatory, nor read a detailed description of the same, can have no idea of the peculiar difficulties which are encountered and have to be overcome at any cost. One of these is that when a telescope magnifies the size of any object, it magnifies also its motion, whether real or apparent, in the same proportion. Any one who ever looked through a spy. glass knows that it must be held perfectlystill, and that any motion communicated to the same, causes an apparent motion of the object observed, and that this motion is larger in proportion to the power of the glass. So in an opera glass, which never magnifies beyond 3,4 , or 5 diameters, the motion of the hand in which it is held is of not much consequence; but when using a long marine spyglass, it is necessary to hold it quite still, and some improvised support is necessary, among which one of the most convenient is the shoulder of a person standing in front of the observer. For large spyglasses or small telescopes a footpiece is necessary, and this must have more stability in proportion to the power of the glass, as the least tremulous motion in the instrument causes a strong vibration of the objects seen, so much, indeed, that observations are often interfered with from this cause.
This is the reason that it has become no longer customary to establish observatories on the top of buildings, as was done in olden times, but on the ground floor. So the old observatory of the University of Leyden, situated on the top of a high building, possessed a large Newtonian telescope constructed nearly a century ago by a maker who had attained a great reputation in this line, but the instrument was rendered perfectly useless by the continued vibratory motion, either by wind, passing carriages, movement of persons in the building, etc. The objects observed were almost always seen in a condition as if tossed by waves. Some two years ago this telescope was still in existence, and shown as a curiosity, when the writer of this article could not help but admire the useless ingenuity with which it was mounted, and which, or an instrument of that power, was entirely out of place. By the general revival of astronomical science, which became very active at that period, it was superseded by a placed at a lesser height.
And here we must explain what is meant by equatorial mounting. The apparent motion of the heavenly bodies caused by the earth's rotation around its axis, and which increases along the celestial equator, which is the principal region for observation, to about a quarter of a degree for every minute of time, is of course magnified in proportion to the power of the instrument; so for a telescope magnifying say 120 diameters, it will be 120 times as much, or 30 degrees for a minute, or half a degree for a second of time. It is evident that in such a case no object would remain in the field of the telescope long enough to be seen or studied, but stars and planets would move through the field at too rapid a rate. The equatorialmounting thus is intended to cause the telescope to follow that motion, and is accom-
plished in this way: in place of mounting the joints by which the free motion of the instrument is obtained, to a vertical solid pillar, they are attached to an axis placed parallel to the earth's axis, and this axis is rotated by clockwork at the rate of once in 24 hours, in an opposite direction to that in which the earth is revolving, so that these two movements neutralize one another, and the telescope, if left
to itself, is rendered immovable in space, except following the earth's yearly orbit, which, however, does not influence the direction of the instrument to any perceptible degree.
The apparent motion of the sun is slower than that of the fixed stars, for one day per year, or nearly one degree for every 24 hours; the apparent motion of the moon is again slower to an amount of nearly thirteen degrees for every 24 hours. The clockwork regulating the rotation of the telescopic axis has to be set in accordance to the intention to use the telescope to observe the fixed stars, sun, or moon, and this movement must be more minutely regulated in proporon to the power of the instrument.
Lately a great pressure has been brought to bear on those
having the power or means of managing or founding astronomical observatories, so as to induce them to have large powerful telescopes constructed. Million dollar telescopes have been spoken of, but the difficulty of their mounting and the absolute necessity of regulating their proper motion to follow the objects observed appears not to have been thought of, while it is one of the most important mechanical problems with which the utility of such instruments will stand or fall.

Suppose a telescope could be constructed which would bring the surface of the planet Jupiter to within an apparent distance of ten miles. Then not only the motion of the earth herself, but also that of the planet in his yearly orbit, and the immense velocity of rotation around his axis in ten hours, would have to be compensated for by the clockwork attached to the telescope, as without it the objects would fly across the field with the velocity of a railroad train. To realize the truth of this assertion we have only to consider that the circumference of that planet amounts to a quarter of a million miles, so that every point of its equator moves through that distance in a little less than ten hours, equivalent to a velocity of about 29,000 miles per hour. Seeing objects moving with such a velocity at a distance of ten miles is equal to seeing objects move with ${ }_{50}^{1}$ 万th part of that velocity at a distance of $\frac{1}{500}$ th part of ten miles, which corresponds to observing a velocity of 50 miles per hour, at a distance of 34 feet. Looking therefore with a telescope bringing the surface of Jupiter to an apparent distance of bringing the surface of Jupiter to an apparent distance of
ten miles would be equivalent to looking at a distance of only 34 feet at a railroad train moving at a velocity of 50 miles per hour. Of course nothing could be distinguished. The problem is therefore not alone to make the lenses and the tube of a gigantic telescope, but an equally important problem is the mounting and clockwork required to make observation possible. And this becomes an interesting problem because with such high powers the earth's yearly and daily motion, not alone but also the velocity in orbit and rotation of planets must be taken in account, as well as the in clination of the axis, of planes of orbits, and of rotation.

HEREDITARY AS A FACTOR IN PAUPERISM AND CRIME.
Dr. Edward H. Parker recently read a paper of the above title before the Medical Society of the State of New York, at Albany, in which he reviewed the question of hereditary as an element in the production of crime and pauperism. He claimed to do this simply as a physiologist and with no sentimental, biasing notions. The elements for his line of argument he obtained from the Report of the Prison Association and the Report of the State Board of Charities of New York. He does not deny that anatomical, physiological, mental and pathological peculiarities of parents may be transmitted, but that they will be is not so absolutely certain. Strength, pluck, and skill may all be inherited, which when turned in one direction makes the skillful mechanic, and when by circumstances diverted from their legitimate channel, produces the expert criminal. He declares the mental characteristics of the two to be much the same, except that the criminal-a burglar, for instance-needs physical strength and reckless audacity, all of which may be inherited by both, but which the former can do without. The qualities that may be attributed to hereditary do not make the one more a riminal than the other an expert mechanic.
In reply to the question if there is not a certain base propensity, a lowness of character, which may be transmitted, he replies that physiology knows no such peculiarity in the human animal. He advocates that the cure for unbalanced lives is training, and that the general phenomena of crime is due to surroundings, or, to use his own words, to environment. Let the pure and moral mind come in contact with and become enveloped by morbid and immoral tendencies, and the result will be immoral. Environment makes generation after generation of thieves, burglars, prostitutes, criminals, etc., and a different environment makes genera tions of learned persons, mechanics, tradesmen, etc. Obser vation, he says, teaches that environment determines for the most part how capacity shall be trained and how used.
He denies that the evil tendency to crime is corrected by correcting physiological tendencies, nor has he any confidence in the training of a bare morality. Men can only be restrained from crime by deep, profound religious training, feeling that goes down into the depths of the soul, which makes it a part of one's self to know that certain things must not be done because they are sins.
Mr. Parker says, as a physiologist, he is unable to see any heredity as a factor in pauperism, with the exception of feeble mind and body, and these are rather indirect factors. The State must be made to change this radically, rather than to lament the impossibility of making physiological changes over which the State can, from the nature of things, have no control.

KEELY MOTOR STOCK AT A DISCOUNT.

A well-known circus man named James Kelley has failed, and the public are favored with a schedule of his debts and assets. The former amount to nearly a quarter of a million dollars. Among the latter are seventeen cages of wild animals, one hundred and twenty performing horses, five royal igers, an intelligent zebra, a double-humped camel, five elephants, and, bigger show than all, forty shares of Keely Motor Stock. The bankrupt alleges that the latter is worthless; but only a few months ago the financiers of the motor concern claimed that that number of shares was worth at least four millions of dollars.

