DMPROVED CARPET LOOM.

The loom herewith illustrated is the invention of Mr. Jo siah Gates, and has a considerable number of practical improvements embodied in its construction, which mark it as a distinct step in advance of our present looms. One prominent feature is the use of a combined set of reciprocating inent feature is the use of a combined set of reciprocating
and revolving shuttle boxes, thus allowing an exceptionably large number of different colors or shades to be used when desired, namely, as many as sixteen. The use of shaded colors in producing graduated succession of tints in ighter and darker shades is cer tainly a most artistic improvement over the vividly contrasted colors so largely in use in our present carpet and general woven fabrics.
The use of the combined set of revolving reciprocating shuttle boxes permits the use of a few shuttles only when a small number of colors re that are required That is to say, the three upper shuttle boxes and the uppermost box of the revolving set make a set of four reciprocating shuttle boxes without the use of the revolving gear at all, which may then be thrown out of action, and all the wear and tear of its working parts thus be saved. The reciprocating and revolving action of the shuttle boxes are obtained in the ordinary way by the use of fingers upon the usual perforated cardboard pattern, and which, upon dropping through the pattern, cause the corresponding shuttle box to be brought into the requisite position fordelivery across the material.
The loom is fitted with a peculiar double-beat lay, and combined positive motion of the shuttle, which is of great value in the weaving of heavy fibrous material, such as rattan, matting, and other long coarse fibrous substances. The double-beat lay isobtained by means of grooved cams upon the main shaft, and acting upon connecting rods or levers slotted on the shaft and connected with the lay, the cams being constructed with two eccentric operating or pressing points and a depression between them. At each revolution of the hem. At each revolution of the haft and the cams the two eccentric points of each cam succes-
sively act upon the roll of the slotted lever, and thus produce the double beat or repeating action of the lay. Either of the eccentric or operating points of the cams may be varied, and one may extend beyond the other to produce one full beat and one partial beat, which in some cases may be preferable, as the repeating action is intended for clearing the sheds and for more thoroughly beating up the filling. By giving the second beat a greater amount of force a firmer and closer texture of fabric may be produced, since the second beat of the lay takes place on the cross shadeor as the new shade is formed.
A double-beat action of the lay has already been used in England in many looms. but to the best of our knowledge, it has bitherto been produced by the duplex action of a toggle joint, which can only give two successive blows of equal travel and intensity. By the use of the double-throw camsinthe Gates loom the two beats may be timed at any suitable interval after each other and the blows may be varied in intensity to suit any requirements

This loom is also provided with an improved take-up apparatus, in which the tension is very ingeniously exactly
suited to the draught of the material so as at no time to in- or part of the frame. The backward and forward motions uriously strain the fabric. This improvement we illustrate of the sword impart the same motions to the lever and the in detail, Fig. 2. A^{2} represents the cloth roll, and it has a pawl, g^{3}, causing the latter to engage with the teeth of the ratchet wheel, B , on one end, a little inside the sword, C , wheel, and when the cloth is slackened by the introduction rising from the rocker shaft, \mathbf{E}, and arranged to work in of filling in the web, and by the action of the let-off methe usual way. The cloth roll is shorter than the loom, and chanism, the motion and power of the oscillating sword the usual way. The cloth roll is shorter than the loom, and
it is supported in bearings on an open bracket, D , project-
causes the connected pawl, g, to turn the wheel and the roll, and to wind up the cloth as fast as it is woven. The introduction of the tension spring, K, is here most valuable. At some occasions during the weaving of the cloth and the winding, the rate of let-off may not exactly correspond to that of the winding on, and at the same time there is always a certain ten sion most suitable for taking up the cloth. When the forward motion of the sword brings the pawl into contact with the tooth of the wheel, the wheel may be either driven forward, or, if the resistance be great, the spring, K, will yield and allow the end of the lever, H, to depress under the action of the rock of the sword, instead of the ratchet wheel being driven by the pawl. The tension with which the cloth is wound up will thus depend upon the tension of the spring, and thus will remain tolerably regular, and may be adjusted to any required winding-up tension.
The other detail we illustrate is an improved bobbin catch, by means of which the momentum of the bobbin is allowed to be graduạlly taken up by the action of a longitudinal spring. When the shuttle is set in sudden motion by a blow, the bob bin in this case first compresses the spring, and thus more gradually ac quires its velocity, thereby saving a considerable portion of the filling, which, in an ordinary bobbin, is either separated or loosened. Th same gradual stoppage of the bob bin by a spring cushion takes place when the shuttle is driven home and many filling bobbins are there by saved, which, in an ordinary shuttle, are split by the sudden stoppage of the shuttle.
Fig. 3 is an underside view, and Fig. 4 a longitudinal section of the rear end of a weaver's shuttle, with the spring recoil above referred to. A is the bobbin catch, constructed with a longitudinal slot, b, and a rising rear end, d^{s}, and furnished with a spiral spring, E, and a re taining pin, J^{2}, while the shuttle is supplied, near the forward end of he bobbin-catch mortise with ing inward from the end frame, F, leaving room between stop or bar, c^{1}, as a bearing for the forward end of the the frame and the bracket for the oscillating sword and the

atchet wheel

The usual fulcrum pin, e^{5}, passes through the slot, b, and
At the forward side of the loom, and hung to the bracket this allows the bobbin catch and the bobbin to move for or other support, is a pawl, P , to hold the wheel against the, ward, or to yield to the action of the blow of the shuttle draught or unwinding action of the cloth upon the when its forward end strikes. The spring, E ${ }^{1}$, instantly re roll. In practice the pawl, P^{1}, is in two parts, that turns the bobbin and catch, or draws them back after each is, a long and a short pawl to catch and hold on the blow of the forward end of the shuttle. The spring acts be distance of halfa tooth, one pawl catching ahead of tween the bar, c^{4}, secured to the substance of the shuttle

Fig. 3.

Fig. 4
 and the ear, d^{3}, rising from rear end of the bob bin catch plate while the pin, f^{2}, projecting forward from the ear, holds this end of the spring in position, not only when in action but also when the rear end of the bobbin eatch is passed upward to release the catch end from the groove, g^{6} in the bobbin.

The Gatesma the other, and vice versa. To the lower portion of chine is supplied with a most perfect automatic gear by the sword, C^{1}, a lever of a peculiar construction is means of which the action of the filling beat is at once pivoted at \mathbb{C}^{3}, and a lug or arm, d^{1}, rises at right checked and thrown out of action if the shuttle has not been angles to the lever, and to this ear a counterbalance fully returned home after its last traverse across the warp pawl g^{2}, is hung near its center by anyeasy working joint or In this way, should a shuttle be caught and not reach its a pivot, e^{s}. The outer end, n^{1}, being most weighty, holds box, the action of the lay is instantly suspended, and the the catch end, S^{2}. in contact with the teeth of the wheel, B^{1}. shuttle replaced without any injury having been done to the The arm, H, of the lever extends rearward, as shown, and warp.
a spring, K, is attached to its end and to some fixed object t. This loom is being introduced into England, and as many
as 225 of them are running in this country. The speed at \mid Supposing the object to be made food of bya water snake which the looms may be run seems also to be exceptionably is a frog. After seizing it, the snake unhooks from the fro high-so much so as to give a maximum production, with the teeth of one side of its upper jaw, and forces them furskilled labor, of 35 yards of carpet per day. The general ther forward upon the frog, where it rehooks them, and all-round average production per day, amongst the general
 dards per day, which certainly speaks well for the construction and easy working of the loom.

the water snake-how it eats.

If we wish to keep serpents alive and healthy in captivity they must of course be fed. They must, with few exceptions, have living food. I have endeavored in various ways to entice them to eat raw beef, without, how ever, any success. In only one instance, I believe, did I ever succeed in making a ser pent devour a lifeless object. This was a water snake which I enticed to seize and swallow a dead minnow by moving it rapidly about in the snake's bath tub, with a piece of slight wire. But even after the fish was seized, I was obliged to move the minnow's tail from side to side, to imitate life, for fear the snake should perceive his mistake and relinquish his hold.
Garter snakes must be fed upon toads and frogs, and water snakes upon frogs, tadpoles, and fishes.
I cannot say I enjoy seeing a snake swallow a frog. The last time I witnessed our water snake (tropidonotus sipedon, Linn.) devour a frog, I must confess a feeling of pity for the little frog came upon me. The snake first, by a sudden dart through the water, caught the frog by one of its hind legs. The frog struggled in terror, and madly endeav ored to free itself from its ferocious captor. It struggled in vain, for the snake slowly drew the frog into the dark vale from whence no frog ever returns. From the instant the frog was seized, until it was entirely swallowed, and the snake's mouth closed, it cried most piteously, first loudly, but by degrees growing fainter and fainter, until entirely hushed in the gullet of the snake. I imagine I can yet hear that young frog's death cry. It was repeated at intervals, and sounded something like the words "quaak! uck! uck! quaak! uck uck!" uttered in a plaintive tone.
While the frog was passing through the esophagus of the snake, and even after it had arrived in the ophidian's stomach, I observed by the external agitation of the snake's body how violently the frog kicked and writhed to extricate it self from its untimely tomb.
It may be said of most serpents that rather than eat, in the general sense of the word, they drag their jaws over and the general sense of the word, they drag their
around their prey, previous to swallowing it.

THE WATER SNAKE.

Reynier's New Electric Lamp.

The author's object in this invention has been to produce n electric lamp capable of acting for 24 hours. He has succeeded in almost completely suppressing the occultations hitherto supposed inherent in the use of discs. M. Cance submitted to the Academy of Paris a novel system of elec-tro-magnets with a multiple nucleus, analogous to that of \mathbf{M}. Camacho, but in which the tubular nuclei are replaced by series of small rods of soft iron in juxtaposition and enveloping in pairs the different layers of spirals.

Requirements for a Good Ship's Compass.
In order that a compass may be good, the needle should be very hard and well magnetized so as to retain its power, the cap should be of ruby or agate, carefully hollowed so as to be even and smooth, and the point should be hard, fine, and sharp.
No dirt or dust should be permitted to get into the cap, as it will make the needle sluggish, and enable the point to grind into the cap. The point should be examined from time to time and kept sharp. It is important also that the point should be exactly in the intersection of the two diameters passing through the gimbals, and that it should be exactly at the same height as the centers of the gimbals, a matter frequently neglected by the maker. It has been shown that a compass is more steady, and that the quadrantal correction is more perfect when the card has two parallel needles, the ends of which intersect the circumference of the card at points 60° apart. The admiralty compass has four needles.
If the bowl is of copper, or better if a stout copper ring surrounds the card, the vibrations of the needle will be calmed, that is their amplitude will be reduced, while the time of viration will remain the same, owing to an acphagus, and into the stomach of the serpent, that is if the tion being set up whichappears to be due to currents generated prey be of any considerable size, the ribs expand, widely distending the skin of the neck and body, leaving spaces beween the scales, which, being generally light in color, cause the serpent, especially if it be a dark one, to have the appearance of being prettily speckled with white.
Fig. 1 represents a tropidonotus sipedon in the act of de vouring a frog. The movable quadrate bones are forced outward, thus widely distending the head and neck of the serpent. The dotted line indicates the size of expansion while the frog is passing through the œsophagus of the serpent. Fig. 2 represents the same serpent in a state of quiet. The occipital plates of this specimen are somewhat smaller than they generally are in this species.

Sugar of lead ground in linseed oil is a good paint dryer
by the relative motion of the needle and the copper. It may be suggested that no means of cutting off the action of the ship's iron from the compass can be effectual, since anything which will do that will also cut off the action of the earth's magnetism also, and render the compass useless.-From Fairman Rogers' work on "The Magnetism of Iron Vessels."

THE CURLY-HAIRED ANTELOPE.

Very little is known of this antelope in its wild state. Siebold, in his "Fauna Japonica," calls it antelope créssue, and mentions that it is known to the Japanese by the name of "Nik," but that it is rarely found, and only then in the highest mountains of the Island of Niphon and Sikok. The appearance of the animal would indicate that it is a hardy appearance of the animal would indi

THE CURLY-HAIRED ANTELOPE.-(JAPANESE CHAMOIS).

