of milk, which, on exposure - to the air, turns sour and its mandibulated mouth and jointed legs, seems at first well curdles: the sugar it contains being converted into lactic acid. At the same time microscopic observation always reveals the presence of minute organisms of the nature of bac teria in the coagulated milk. By collecting a number of samples of milk in separate glass vessels, with suitable precautions to prevent the access of organisms, the milk in a few of the glasses was found, after some weeks, to be en-
tirely free from change, destitute of any acid reaction; and under the microscope, no indications of the presence of bac teria were to be found.
The next step in the investigation was to find evidence to decide whether the particular bacterium found in sour milk
was or was not the cause of the lactic fermentation. For was or was not the cause of the lactic fermentation. For this purpose, Professor Lister endeavored to estimate the placing one fiftieth of a minim of the milk on a slide, and counting the number of bacteria in the field; then by dilu ting the milk to such an extent that a single drop of the liquid would probably contain, on the average, one bac terium, a liquid was obtained, with which a number of separate quantities of boiled milk were inoculated, by adding a single drop of the liquid. The result was that out of five glasses of milk treated in this way only one was curdled, and on examination the one was found to contain the bac terium lactis, while the four others, which did not curdle had no bacteria in them.
In another series of experiments, five specimens of milk were each inoculated with a drop of the liquid, calculated to contain two bacteria; other five specimens were inocula ted with drops calculated to contain one bacterium; another set of five open glasses were inociulated with drops calculated to contain one bacterium; and one with a drop calcula ted to contain four bacteria. The result was that the last specimen curdled in a few days, and all those calculated to have two bacteria curdled in a few days. Of the five glasses calculated to have one bacterium, three remained liquid. On opening one of these glasses the milk was found to be perfectly sweet; it had a slight flavor of suet, similar to that which Pasteur has described as resultt
oxidation of the oleaginous constituent of milk. The result of these experiments proves conclusively that
the ferment which caused the curdling of the milk was not in solution but in the state of suspended particles, otherwise every drop of the inoculating liquid should have produced the same result. Again, the fact that some drops were destitute of the ferment proves in like manner that it was no in solution.-Pharmaceutical Journal.

The Ancestry of Insects.

In his new work on "Our Common Insects," Mr. A. S. Packard gives an excellent chapter under the above caption. He considers that the natural system is the genealogy of organized forms; and when we can trace the latter we establish the former; and he concludes that there is a stroñg genetic bond uniting the worms, insects and crustacea in one grand sub kingdom. Many of the most interesting
facts pointed out by Mr. Packard are presented in confacts pointed out by
densed form below.
The lowest form of insect life is the parasitic mite, the highest is the hive bee. Between these two there is an ascending scale of being, a continuity of improving organizations, which affords strong arguments for the theory of evolution. The mite is called the pentastoma, and lives in the manner of the tape worm a parasitic life in the higher ani mals. It is found in the nostrils of dogs, sheep, and horses. It is a little higher than some worms but lower than others Young mites when hatched have but three pairs of feet, while their parents have four. If these early stages of mites and myropods are compared with these of the true six-footed insects as the cicada, or dragon fly, it will be seen quite plainly that they all share a common form. By simple modi fications of parts here and there, by the addition of wings and other organs in these simple creatures, Nature has rung numberless changes on the elemental form. Starting from the simplest kinds, such as the poduras, spiders, grasshop pers, and May flies, allied creatures which we know were the
first to appear in the earlier geologic ages, we rise to the highest, the bees with their complex forms, their diversi fied economy and wonderful instincts. In this progress upwards the beetles are higher than the bugs and grasshoppers, and the butterfies and moths more highly organized than the flies. In the egg nearly all insects agree most strikingly in their mode of growth. The earlier stages of the germ of a bee, fly or beetle bear a remarkable resemblance to each other, and suggest that a common design or pattern at first pervades all. At a certain period in the life of the embryo, we notice that all agree in having the head large, and bearing from two to four pairs of mouth organs
resembling the legs; the thorax is merged with the abdomen and the general form of the embryo is ovate. The first to discuss the subject of the ancestry of insects was Fritz Muller, who suggested that the larva of crabs, zoëa, was the common ancestor. Haeckel and Friedriech Brauer have par tially sustained this idea. The latter declared his belief that, though it seemed premature after the discovery of highly organized winged insects in rocks so ancient as the Devon
ian, to even guess as to the ancestry of insects, yet he would ian, to even guess as to the ancestry of insects, yet he would
suggest that, instead of being derived from some zoëa, "the suggest that, instead of being derived from some zoea, "the
ancestors of insects must have been worm-like and aquatic." Mr. Packard rejects the zoëa origin of insects, and says the only refuge is in the worms. But how to account for the transmutation of any worm into a form like the leptus, with
nigh impossible. We have the faintest possible indication in the structure of some mites, and of the tardigrades and petastoma, where there is a striking recurrence to a wormke form, readily noticeable. In tre demodex we see stances, an elongated, worm-like form. The mouth-parts stances, an elongated, worm-like form. The mouth-parts
are aborted, while the eight legs are not jointed and form are aborted, while the eight legs are not jointed and form
simple tubercles. In the tardigrades, a long step lower, we simple tubercles. In the tardigrades, a long step lower, we
have unjointed fleshy legs armed with from two to four claws, but the mouth-parts are essentially mite in character A decided worm feature is the fact that they are hermaphro dites, each individual having ovaries and spermaries, as is
the case with many worms. When we come to the singular the case with many worms. When we come to the singular
creatures of which pentastoma and linguatula are the type we have the most striking approximation to the worms in external form. They lose the rudimentary jointed limbs, which some have well marked in the embryo, and from be ing oval, rudely mite-like in form, they elongate, and only the claws remain to indicate the original presence of true ointed legs.
Professor Ganin, a Russian naturalist, made some remark ble discoveries in regard to the early stages of the platygas-
ter, a parasite on a gall fly. He established facts which ter, a parasite on a gall fly. He established facts which bear strongly on the theory of evolution by "acceleration
and retardation." In the history of many early larva stages we see a remarkable acceleration in the growth of the embryo. A simple sac of unorganized cells, with a halfmade intestine, so to speak, is hatched, and made to per form the duty of an ordinary, quite highly organized larva Even the formation of the "primitive band," usually the first indication of the germ, is postponed to a comparatively late period in larval life. The different anatomical systems
appear at longer or shorter intervals, while in one genus the respiratory organs are not developed at all. Thus some por tions of the animal are accelerated in their developmen more than others, while others are retarded and in some species certain organs not developed at all
That the cylindrical form of the bee grub and caterpillar is the result of modification through descent is evident in the caterpillar-like form of the immature caddis fly. In like manner the caterpillar form is probably the result of the leaf eating life of a primitive larva, and the soft-bodied maggo of the weevil is evidently the result of its living habitually in cavities in nuts and fruits. So the organs of special
sense in insects are in most cases simply altered hairs, sense in insects are in most cases simply altered hairs, which are themselves modified epithelial cells.

NEW ARRANGEMENT OF THE AIR RESER VOIRS IN PUMPS
The object of the air reservoir in pumps and hydraulic machines is to equalize the movement of the water and to deaden shocks. Its action will be more efficacious in proportion as (1) the head of Water is low; (2) the movement slow; (3) the section of pipe and valves large; (4) it is itself large, and (5) as the mass of water is small. Given the pressure and dimensions of the pump in order that the reservoir may operate to best advantage, it is further necessary that it contain as much air as possible, that the water pipes be completely isolated, and that it be disposed as near as possible to the point where shocks and other disorders are most likely tc occur. We illustrate herewith a new arrange ment of air reservoir which we extract from Dingler's Jour Fig. 1.

Fig. 2.

nal. Pis the section of the pump, V the valve box, wo the reservoir of aspirated air, and 20° that of compressed air. The dotted lines indicate the highest levels, full lines the minimum normal level. The entry pipes, $e e^{\prime}$, are placed exactly above the maximum level, and escape pipes, $a a^{\prime}$, are situated as low down as possible.
By this arrangement it is claimed that sudden shocks are mpossible. Even if the valve, S, be opened suddenly, so as to allow of the escape of considerable water at once, the perturbation affects immediately only the small column of
water comprised between the air reservoir and the escape water comprised between the air reservoir and the escape
orifice. The water in the tube remains as before, as it is only after the airpressure in the reservoir, K , is diminished that the flow progressively becomes more rapid.

The Melting Point.

The theory that iron in a cupola is melted all up through the stock is wrong, for every cupola has a certain point at which the iron is melted, and there is not a pound of iron melted in any cupnla until it comes down to the melting point. The melting point in a cupola is generally from six to eighteen inches above the tuyeres, but it may be raised or lowered a little by increasing or diminishing the amount of fuel in the bed; but if we get the bed too high it throws
the melting point ton high, and the result will be slow melt ing. If we get the bed too low, it will allow the iron to get below the melting point, and the result will be dull iron
and in order to do good melting in any cupola, it is ver essential that the melter should know the melting point of his particular cupola. The melting point of a cupola is at the point at which the most intense heat is created by the action of the blast upon the fuel. This intense heat at the melting point will cut the lining more than at any othe place in the cupola, and the lining will generally be found to be cut out more just above the tuyeres than at any other point, which indicates the melting point of the cupola. If the tuyeres are put in so as to distribute the blast evenly through the stock, and the changes of iron and fuel are pu in evenly, and every charge leveled up properly, the hea will be even all through the cupola, and the lining will be cut out in a regular belt at the melting point all around the cupola. On the other hand, if the tuyeres are not put in so as to distribute the blast evenly through the stock, or the charges of iron and fuel are not put in even and level, or if the fire is all on one side of the cupola, the heat will not be even through the cupola, and the lining will not be cut out in a regular belt at the melting point, but will be cut full of holes, which shows that the cupola is not melting all around, but is only melting in spots. By this irregular charging and melting in spots, the cupola may be reduced to half its melt ing capacity, which accounts for a cupola melting fast on one day and slow on another day. As before intimated he melting point in a cupola is the point at which the mos intense heat is created by the action of the blast upon the fuel. When the blast enters the cupola it is cold, and as it passes through the heated fuel it becomes hot, and as it becomes hot it creates heat by combination with the fuel, and makes an intense heat. If we have a very strong blast it will travel fast and will pass through the fuel rapidly, and it will have to pass through more fuel before it becomes heated sufficiently to make an intense heat by combination with the fuel. On the other hand, if we have a mild blast, the blast will pass through the heated fuel slowly, and is more heated, so that it does not have to pass through so much fuel before it becomes sufficiently heated to make an intense heat by combination with the fuel; so that when we have a strong blast the melting point of a cupola is higher than when we have a mild or weak blast; and the bed has to be put in higher in a cupola with a high melting point than a cupola with a low melting point, which accounts for one cupola requiring more fuel in the bed than another cupola does. When the cupola is in blast, the bed or fuel in the bottom of the cupola is constantly burning up, and the unmelted iron will get down below the melting point. To prevent this, the melter has recourse to charges of fuel between the charges of iron, and as the charges of iron are melted and drawn out at the tap hole, the charges of fuel come down and replenish the bed and again raise the melting point; the next charge of iron comes down and is melted and drawn out; the bed is reduced and is again re plenished by the next charge of fuel, and so on through the whole heat. If we supply too much or too little fuel between the charges of iron, the melting point will be raised too high or reduced too low, or in other words, if we have a melting point of ten or twelve inches in height in our cupola, and we supply twenty or twenty-five inches of fuel, this ex tra fuel must all be burned up before the iron can come down to the melting point; and we will not have a continuous melting, but will have a delay between each charge of iron. If, on the other hand, we have only five or six inches of fuel between the charges of iron, when we should have ten or twelve inches, this small amount will not more than half replenish the bed, and the unmelted iron will get down too low and will not make hot iron, and the iron may not be melted at all; and in order to do either fast or econ omical melting, we must not use either too much or too lit tle fuel, and we must have the fuel distributed so as to suit the particular cupola in which it is used; for, as before explained, there are scarcely two cupolas that will melt exactly alike on account of the melting point being higher or lower, which is caused by a stronger or weaker blast, or by more or less draft; and in order to do good melting, the melter should not charge his cupola just the same as some ther cupola of the same size is charged because that cupola does good melting charged in that way; but he should vary the height of the bed and the amount of fuel between the charges of iron, and the amount of iron on the bed and on each charge of fuel, until he finds the exact proportions that will do the best melting in that particular cupola.
Melters, in changing from one cupola to another, will generally have trouble in making hot iron, and they will ften make a complete failure of melting in a strange cupola This is simply because they undertake to charge that cupola he same as some other cupola that they have been melting , and they never pay any attention to the draft, blast, or the melting point of the cupola, which is the cause of their failure in melting in a strange cupola. When a melter takes charge of a strange cupola, his first object should be to study the draft of the cupola, the nature of the blast, and to ascertain the melting point of the cupola. He can gen erally tell where the melting point is by noticing where the lining is cut out the most, and he can tell whether the cu pola is melting evenly, or is only melting in spots, by notic ing whether the lining is cut out in a regular belt all around the cupola, or is only cut out in holes, as before explained. He can tell whether the bed is too high or too low by notic ing how the cupola melts. He can tell whether he is using too much fuel between the charges of iron, or if he is put ting in the charges of iron too heavy, by noticing whether the cupola melts regularly or not, and by noticing if it
the bars firmly in place, wipe them clean, and test them lengthways with the spirit level to ascertain if they are par-
allel with the bore of the cylinder. Place the level across allel with the bore of the cylinder. Place the level across where further adjustment is necessary. Put marking upon the bars and move the crosshead up and down to ascertain how much the respective liners require reducing. After filing all the liners it is better before putting them in for the next adjustment to give them a light coat of marking, to 'show where they bear. At each trial of the bars the spirit level and the straight edge should be applied. The cross head should be moved up and down the bars to ascertain by the bearing marks upon the surfaces how the crosshead guides fit. The fitting marks are a finer test than the spirit level, hence the last part of the fitting should be performed with strict reference to the bearing marks, both upon the bars and the crosshead as well as upon the liners; the cross head flanges being adjusted and fitted at the same time a the face fitting.
The adjustment is correct when the gland is equally free and has an equal amount of play in the stuffing box a whatever part of the stroke the piston rod may be. In bolt ing up the bottom bars during the last part of the adjusting process, it is necessary to screw up the bolts to the same de gree of tightness, fora little extra tightening in some of the bolts may cause the bars to spring out of true, if the end of the bars or the seating for the liners is not practically true. To set the top bars place the crosshead in the middle of its stroke and lay the bars upon the crosshead guides Then, with the wedges applied as before, ascertain the re quired thickness of the liners, one at a time, leaving them as previnusly a trifle thick, testing them on both the flat and the edge faces by marking placed on the surfaces, and mov ing the crosshead up and down, dispensing with the use of the spirit level and straight edge, and working entirely by the bearing marks.

To renew manuscripts, take a hair pencil and wash the part that has been effaced with a solution of prussiate of potash in water, and the writing will again appear, if the paper has not been destroyed.

NEW BOOKS AND PUBLICATIONS

"Fret Sawing for Pleasure and Profit,". H. T. Wil-
liams, Publisher. New York: Illustrated. cents.
This is a complete handbook of fret sawing, valuable alike to the amaIt describes the various kinds of woods with their uses, and treats of eac it describes the various kinds of woods with their uses, and treats of each an fine paper and profusely inustrated tirougho
Monex and Legal Tender in the United States. By
H. R. Linderman, Director of the Mint. G. P. Putnam's Sons. New York.
This volume contains in a brief and convenient form a complete history regard to it, of the establishment of the mint, of the variations of the regard to it, of the establishment of the mint, of the variations of the
money standard, and the change from the double standard of gold and silver to the gold standard. Foreign coins, the paper currency, national
currency, and the re-snonetization of silver are all considered. As Mr. currency, and the re-monenetization of silver are all considered. As Mr Linderman says, "until recently, the subject of bringing this currency
from a credit to a specie basis has not received the attention which it from a credit to a specie basis has not received the attention w
great importance demands." The work will be found very timely
ful to the public in the examination of these financial questions.

2ecent Amrrixan aul forcign zatents.

Notice to Patentees

Inventors who are desirous of disposing of their patents would find it reatly to their advantage to have them illustrated in the ScIENTIFIC AmER
CAs. We are prepared to get up first- class woon tions of merit, and publish them in the Scientific American on very reasonable terms.
We shall be pleased to make estimates as to cost of engravings on receip of photographs, sketches, or copies of patents. After publication, the cuts become the property of the person ordering them, and will be foun
of value for circulars and for publication in other papers.

NEW AGRICULTURAL INVENTIONS.
improved fence.
Franklin Fulkerson, Frankfort, Ind.-This is a new and ingenious ence, so constructed as to prevent cattle fromputting their heads betwee aid boards and riders an
mproved cotton planter
Daniel W. Reed, Allenton, Ala.-The object of this invention is to provide for use in planting cotton a simple but highly efficient machine which the whole quantity of seed in the hopper will be agitated, and portion thereof also rubbed between opposing surfaces for the purpose of ired manner, at the bottom of the hopper into the oven furrow. The in vention consists in employing vertically and reversely reciprocating seed rubbers and dischargers. the same being arranged on opposite sides of the hopper and working in suitable guides. The invention also consists in providing the sides of the hopper with adjustable pieces or sections for regulating the quantity of seed discharged within a given time.

improved plant and tree protector.

Julius \mathbf{O}. Antisdale, Lake Harbor, Mich.-Ordinarily tubes of sheet metal, paper, and other opaque substances are used for protecting plants against the ravages of worms. The present inventor suggests an excellen improvement in the shape of a glass cylinder composed of two half sec-
tions, which are forced a few inches into the soil, so as to surround the plant. The earth is pressed closely about the cylinder to keep the two ant. The earth is pressed closely about

MPROVED FRUIT DRYER

William S. Plummer, Portland, Oregon.-This invention consists in a case provided in its lower part with a lining set at a little distance from it walls, the large door, the small door, the cleats or sides to receive thefruit ladenair to escape, to adapt it for use in drying fruit It dries the fruit rapidly and evenly and is so constructed that it may be readily take down, set up, and moved from place to place.

IMPROVED DROPPING ATTACHMENT FOR CORN PLANTERS. Jacob W. Oberholtzer and Charles E. Wilcox, Hiawatha, Kan.-This is
an attachment to corn planters thatwill mark the rows and drop the corn n attachment to corn planters thatwill mark the rows and drop the corn multaneously. The apparatus is used by making a mark acros the end the field and starting the dropping in the mark ai each end of the fiel ous and novel.
improved ditching and tile-lating machine Robert E. Nevin, Enon Valley. Pa.-This is an improved machine fo or digging open ditches and making other excavations. excellent improvements are embodied.
improved seeder and planter.
Uriah Baldwin, Isaac T. Shumard, and William K. Shumard, Stewar ly adjusted to plant the seed in drills or rows. A number of useful rovements are embodied, all of simple and ingenious construction.
improved ventilating glass shade and cover for Plants.
Semon J. Pardessus, New York city.-This is an ordinary glass shad having an opening in the top closed by a hinged plate in which are opengs which can be open or shut at will. Its object is to protect plan IMPROVED ROAD SCRAPER.
James H. Edmondson, Valparaiso, Ind.-This road scraper is of the sulky ype, and is so constructed that it may be easily operated by the drive rom his seat to load and unload it. When loaded it may be swung beneat er axle and carried to any desired distance. It is an excellent machin
use upon roads in parks and country places.

NEW MISCELLANEOUS INVENTIONS.

improved fireplace grate.

Robert L. Mitchell, Huntsville, Ala.-This invention relates to certain mprovements in open fireplace grates, and it consists in the particula ner back dombe back and sides, and in the combination with th號

IMPROVED STOPPING MECHANISM FOR LOOMS.

John Megson, South Adams, Mass.-Theobjecthere is to stopthemotion of a loom in the event of the weft or filling running out or breaking, if ach motion of the loom is permitted by the fork being operated by the nd of the thread which has been left by the shuttle. Such weft or thread ermits the motion of the loom to continue in two ways, namely, by ge ing entangled on the fork and also by lying in the box in such a positio was filling in the shuttle, and if more chases the loom will run as if the an imperfect pattern will be produced, or it will be necessary to adjus the pattern chain. The new attachment breaks the thread off, and whe it lies in the box it slackens it, taking away its resistance to the fork.
improved machine for gumming labels.
Lazarus Morgenthan, New York city.-This consists essentially of an enly ess feed belt that conducts the labels to begummed to an endless supbelow by distributing rollers. A circular brush exposes all parts of the label to the action of the supply belt. A second revolving brush clears th labels from the pressure brush, and conducts them to an inclined clearin plate, and from the same to the place of use. These machines are esce ently suited for applying paste to wall paper, stamps, labels, etc. One operation at the fair of the American Institute, and its working well

NEW MECHANICAL AND ENGINEERING INVENTIONS

improved car coupling

William Harrison, Linneus, Mo.-This invention relates to an improve ment in the class of safety car couplings, that is to say, couplings which are so constructed that the device for locking the link may be raised o lowered without requiring the operator to enter between the cars. The dion consists chiefly in providing a sliding case for each drawhea dapted to raise, and lock in the elevated position, the device that en adapted to raise
gages the link.

improved machine for making barrels.

William K. Hoback, Bentonville, Ark.-The staves are set at each en a ring, or annular guide, and an iron band is lowered to surround an nclose the hoops about the middle of their length. The said band is adnnular anvil or heavy iron ring is lowered inside the barrel or hogshea to a point nearly opposite the outer adjustable band, and it serves to hol the staves in position, while a central hoop is being nailed and the points of the nails that secure the hoop are turned and clinched on the nular anvil.

Meroved re-sa Wing machine.
John Lamb, Ottawa, Ontario, Canada.- This is a new resawing machine for splitting slabs, boards, or plank. It embodies an ingenious arrangement of adjustable feed works. The lumber is carried against a circular saw by rotation of rollers which follow
imposing any r due strain on the feed.

NEW HOUSEHOLD INVENTIONS.

improved extension bed lounge.
William E. Buser, Chillicothe, O.-This manufacturer has devised a in view is to render the hea bed lounges having a sliding top. The object lounge is extended; to attach the false bottom to the true bottom, an support it by such means and in such manner as will enable it (whe raised) to extend over the foot of the body of the lounge; to provide im proved stops for preventing the top being detached from the body of the ed off the same to allow the false bottom to be raised.
mproved washing machine.
Aaron M. Cornelius, Oregon City, Oregon.-This machine has a corruated roll that revolves over a bed consisting of two or more smaller corruaed rolls. There is a new arrangement of spring followers for carrying he smaller rolls up against the larger rolls, an improved arrangement of advantages claimed are durability, the various parts adjusting themselve

MPROV
Jesse Failing, Umatilla, Oregon.-This consists of an ordinary candletick, but split centrally at its cylindrical part, so as to form two halves, that clasp the handle. The split stick is held together by a spring placed immediately below the rim, and retained there by suitable rests. The
spring-acted top rim of the stick holds the candle frmly in place until it pring-acted top rim of the stick holds the candle firmly in place until it pressure is relaxed, and thereby the interior spring forces the candle gradually until entirely consumed.

