Busitess atd eersonal.

The Charge for Insertion under this head is one Dollar
aline for each insertion. If the Notice exceeds four a linefor each insertion. If the Notice exceedg fow
lines, One Dollar and a Half per live woill be charged.

Metallic Letters and Figures to put on patterns of
castings, all sizes. H. W. Knight, Seneca Falls, N. Y. How to make Violins-Write J.Ranger,Syracuse,N.Y.
Blake's Belt Studs.-The best and cheapest fastening for Rubber or Leat
All kinds of new Lift and Force Pumps for all pur-
poses, at half price, or trade for frearms or tools. W. \mathbf{P}. poses, at half price, or trade
Hopking, Lawrence, Mass.
Steam Yacht for sale. 31 feet long, $61 / 2$ beam; new.
John Howard, No. 1720 Rittinhouse st., Philadelphis. John Howard, No. 1720 Rittinhouse st., Philadelphia.
Mothers make selections for themselves uptown, but they always go to Baldwin t
Wanted-The Agency of small article of merit or novErnst \&Co., 26 Clifr street, New York.
Thermometers and Hydrometers for scientific and
other purposes. Goldbacher, 98 Fulton street, N. Y. For Sale.-One 3 ft. Planer, $\$ 195$; one 8 ft. .do., 8950
ne $26 \prime$ Lathe, 8295 ; one $22 \prime \prime$ do., 8175 ; one $15 \prime$ do., $\$ 120$. At Shearman's, 132 North 3d street, Philadelphia, Pa. Inventors.-Send 10 cents for the "Journal
tion," 4 months. 87 Park Row, N. Y. Room 2 .
Reliable Oak Leather and Rubber Belting. A speclalty of Beiting for high speed and hard work. Charles
W. Arny, Manufacturer, Phila., Pa. Send for price lists. Shaw's Noise-Quieting Nozzles for Escape Pipes of high pressure escaping steam without any detriment
whatever. T. Shaw, 915 Ridge Ave., Philadelphia, Pa. For 13, 15, 16, and 18 in. Swing Screw-Cutting Engine
Lathes, address Star Tool Company, Providence, R. I. John T. Noye \& Son, B.jffalo, N. Y., are Manufactur ers of Burr Mill Stoness and Flour Mill Machinery of all kinds, and deaiers in Dufour \& Co
Send for large illustrated catalogue.
Removal., Fitch \& Meserole, Manufacturers of Elecrical apparatus, and Bradley's Patent Naked Wire He
ices, have removed to 40 Cortlandt St., N. Y. Experilices, have ren
mental work.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J. For Best Presses, Dies, and Fruit Can Tools, Bliss \&
Williams, cor. of Plymouth and Jay Sts., Brooklyn, N.Y. Lead Pipe, Sheet Lead, Bar Lead, and Gas Pipe. Sen
for prices. Bailey, Farrell \& Co., Pittsburgh, Pa. Hydraulic Presses and Jacks, new and second hand Lathes and Machinery for Polishing and Buffing metalis.
E. Lyon \& Co., 470 Grand St., N. Y.
Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel -other kinds imitations and inferior.
Caution.-Our name is stamped in full on all our best tandard Belting, Packing, and Hose. Buy that only
The best is the cheapest. N Now York Belting and PackThe best is the cheapest. New York Be
ng Company, 37 and 38 Park Row, N. Y.
Steel Castings from one lb: to five thousand lbe Invaluable for strength and durability. Circu
Plttsburgh Steel Casting Co., Pittsburgh, Pa.
Leather and Rubber Belting, Packing, Hose, and Man ufacturers' Supplies. Send for list. Greene, Tweed \& For Solid Wrought Iron Beams, etc., see advertisement. Address
Blank Book Back-Shaping Machine. Ilustrated cirdiar free. Frank Thomas \& Co., Home St., Cincinnati, O.
Hand Fire Engines, Lift and Force Pumps for fire
and all other purposes. Address Rumsey \& Co., Seneca
Falls, N. Y., U.S. A.
Help forthe weak, nervous, and debilitated. Chronic and painful diseases cured without medicine. Pulverfull particulars, mailed free. Address \mathbf{P}
Galvanic Co., 292 vine St., Cincinnati, Ohio.
Silver Solder and small Tubing. John Holland, Cin cinnati, Manufacturer of Gold Pens and Pencil Cases. Patent Scroll and Band Saws. Best and
use. Cordesman, Fgan \& Co., Cincinnati, 0
Mill Stone Dressing Diamonds. Simple, effective, and durable. J. Dicktnson, 64 Nassau St., N. Y.
Best Glass Oilers. Cody \& Ruthven, Cincinnati, O.
Best Glass Oilers. Cody \& Ruthven, Cincinnati, O.
For Boult's Paneling, Moulding, and Dovetailing Ma ohine, and other wood-working machinery, address B.C Machinery Co., Battle Creek, Mich
Chester Steel Castings Co. make castings for heavy gearing, and Hydraulic Cylinders wheregreat
is required. See their advertisement, page 30 .
Reliable information given on all subjects relating to Mechanices, Hydraulics, Pneumatics, Steam Engi
Bollers, by A. F. Nagie, M.E., Providence. R. I.

940

It has been our custom for thirty years past to devot a considerable space to the answering of questions by
correspondents; so useful have these labors proved that correspondents; so useful have these labors proved that
the Scientrio American offle has become the factotum the SCIENTLFTOAMERICAN Offlce has become the factotum specialinformation upon any particular subject. So large is the number of our correspondents, so wide the rang of their inquiries, so desirous are we to meet their wants
and supply correct information, that we are obliged to and supply correct information, that we are obliged to employ the constant assistance of a considerable staff of
experienced writers, who have the requisite knowledg or access to the latest and best sources of information. For example, questions relating to steam engines, boilanswered by a professional engineer of distinguished ability and extensive practical experience. Inquiries relating to electricity are answered by one of the most able and prominentpractical electricians in this country cal inquiries by one of our most eminent and exper enced professors of chemistry; and so on through al the various departments. In this way we are enabled
to answer the thousands of questions and furnish the
large mass of information which these correspondence clumns present. The large number of questions sentders it impossible for us to publish all. The editor selects from the mass those that he thinks most likely to be of
general interest to the readers of the Scirntific Amersgeneral interest to the readers of the Scirntific Ameri der go into the waste basket. Many of the rejected questions are of a primitive or personal nature, which
should be answered by mail; in fact, hundreds of correspondents desire a special reply by post, but very few postage stamp. We could in many cases send a brief cely by mail if the writer were to inclose a small fee, a dollar or more, according to the nature or importance of
the case. When we cannot furnish the information, the money is promptly returned to the sender.
J. P. D. will find directions for colored whitewash on pp. 235, 236, vol. 36.-A. M. will find di-
rections for electroplating on p. 59, vol. 36.-H. P. can recover silver from photographers' waste by the process detailed on p. 250 , vol. 27. - A. W. A.'s difficulty as to 64
and 65 squares in the puzzle can be solved by an inspecand 65 squares in the puzzle can be solved by an inspec-
tion of the diagrams on p. 323, No. 21, ScIENTIFIC AmERICAN SUPFLEMENT.-magneto-electric machine on p. 195, vol. 34. A clock time for 12 hours more, if such a machine could exist, would be a perpetual motion. As to tempering small
drills, see p. 186, vol. 26.-R. B. can prevent rust on on or steel by the means described on p. 26, vol. 26 For a recipe for a depilatory, see p. 186, vol. 34.-A. T. R. is informed tha the hydrocarbon engine is reversible.
$-T$. W. will find directions for making sand belts on p. -T. W. will find directions for making sand belts on p . oxygen cylinders.-J. S. C., who inquires as to a wate oxygen cylinders.-J. S. C., who inquires as to a water
fountain, sizes of pipes, etc., should send us a sketch with dimensions.-O. L. is informed that the proper way to ascertain the relative strengths of corrugated and plain sheet metal is by experiment.-G. H. B. will find directions for making colored printing inks on p. 90,
vol. 36.-P. M. will find on p. 250, vol. 36, directions for vol. 36.-P. M. will find on p. 250, vol. 36, directions for making a polishing starch.-C. H. B. can braze the ends his brass plate to make a cylinder of it. See p. 219, eeamers is not new.-C. C. G will find his method raising coal or other weights impracticable.-E. S. had better test so simple an experiment and satisfy him self.-W. H. C. is informed that the most sas
plan would be to get his tools nickel-plated.
(1) J. H. N., of Christ Church, New Zea land, asks: Is the stearin from which the olein has been xtracted by Dr. Mott's process fit to be made at once ment? A. Yes.
(2) B. B. says: I wish to express the trongest coloring matter from certain herbs, sage
eaves, for instance. How can it best be done cheaply and quickly? Evaporation during several days, after boiling and simmering, has the effect; but it is inconveniently slow. The color produced is a medium brown.
A. Dry the leaves, etc., thoroughly, and grind to a fine A. Dry the leaves, etc., thoroughly, and grind to a fine
powder. Digest this for several days in enough warm powder. Digest this for several days in enough warm
water to thoroughly moisten it throughout. Then add standing an hour transfer to a fine linen bag and express the thickliquid in a screw press. 2. Is there anything
that will set the color! A. Try a strong hot solution of that wir
(3) H. K. F. M. says: I have a box made of Bohemian crystal. The cover, which was held to the
box by a brass frame, has come apart from its frame. It seemed to have been cemented by a hard substance re sembling plaster of Paris. How can I make it? A Boil 3 parts powdered rosin for some time with 1 part of
caustic soda and 5 parts of water; then stir into the and use immediately.
(4) F. N. Y. asks: Would a canvas bag, coated with a varnish made of india rubber dissolved
in naphtha, be suitable to hold oxygen gas? A. Yes; but bags made of double pieces of cloth, cemented together with the varnish, are better.
(5) J. A. B. asks: Is there any difference magnetism are supposed to be manifestations of the same force whose actions are produced at right angles
to each other; the action which occurs in the line of polarization being called electricity, and the one at right angles to this line, magnetism. There is an important difference between them, however, as electricity is es-
sentially a dynamic force, while magnetism is purely sentiall
static.

1. Is not the idea of the world moving around the sun in an elliptic form absurdf A. No. 2. My idea is that
the north star is the center of the universe, or in is the magnet that all the suns or fixed stars move around, and that the attraction of the pole of the earth, although it moves around the sun, is the cauee of the change of seasons, or, in other worde, the angle of light. A. There is nothing whatever to support the idea. But
a supposed center of the universe has really been desgnated by some astronomers.
(6) P. S. asks: How much copper wire does it require to construct an electro-magnet that will
uphold 100 lbs ., and what size of wire should be used? uphold 100 lbs. , and what size of wire should be used?
A. Probably 500 or 600 feet of No. 14 copper wire would A. Probably 500 or 600 feet of No. 14 copper wire would
be sufficient with 3 or 4 very large size Grove cells and ores about 6 inches long and 1 inch in diamete
(7) H. S. B. says: Water falls about 16 feet per second. My overshot water wheel moves about 4
feet per second. DoI in that way lose that percentage feet pe
of the
rily.
(8) C. N. B. asks: Can a steam engine be worked with compressed air the same as with steam? A. Generally speaking, it can; but not in every respect.
(9) J. Y. says: If all the measures of length urface, and capacity in the world, and all the weights were lost, by what means could new ones be made cor-
responding exactly with those we now have? A. It responding exactly with those we now have? A. It
would be impossible, as all the measures in use refer to crtain arbitrary standards.
(10) R. B. G. asks: If a horse be pulling
(10) R. B. G. asks: If a horse be pulling
the end of a lever and traveling 3 miles an hour, how many libs presearee againat his collar must he exert, to raise 33,000 libs. 1 foot per minute? A. The force exerted by the animal will depend
(11) C. H. McK. asks: Would a pump so constructed as to create an incessant suction draw waA. Such a pump would raise water no higher than any other that was equally tight.
(12) J. W. says: I wish to get some boilers made about 12 inches in diameter and 13 inches deep. I want them to stand a pressure corresponding to 400°
Faho. Do you think it would be safe to have them made of cast iron? A.We think it will be better to use wrought
(13) J. R. S. says, in reply to E. W. P., who says that he has an artesian well which does not flow, but from which he pumps by inserting a pipe
inside the well tubing, and asks: "IF we attach the pump to the well tubing directly, allowing no air to enter the tube, would it not be like trying to pump water
from an airtight barrel?" If such were the case, the from an airtight barrel?" If such were the case, the
drive well would be a miserable failure; for in all drive wells the pump is attached directly to the tabe. I would and he will gain three times the amount of water that he now gets. By having his pump attached to the well
tube directly, theworking of the pump creates a vacutube directly, theworking of the pump creates a vacu-
um, and the atmospheric pressure on the earth's surface violently forces the liquid to fill the vacuum thus formed, thereby giving a much greater amount of water than can be otherwise obtained. It is a well established
fact that more water can be obtained by the drive well than by any other. A. In our answer to E. W. P., it we only referred to the case in which the well had no connection with the atmosphere, when the pipe was
tightly fitted. It appears, however, that it might have tightly fitted. It appears, however, that it might have
been berter to have stated this more definitely, and we gladly embrace the opportunity afforded by the interesting letters of our correspondents. We would be glad
to receive from J. R. S. some experimental data in to receive from J. R. S. some experimental data in
proof of his assertion as to the great gain from a tight
connection. This also answers J. T. G. and W. H. F.
(14) H. H. S. says: 1. Given, a boat with a 35 feet keel, of 6 feet beam, with fine lines; also a two-
cylinder engine, each cylinder 4×5 inches; and a wheel cylinder engine, each cylinder 4×5 inches; and a wheel
28 inches in diameter and of $31 / 2$ feet pitch. Will an upright boiler, with 135 square feet heating surface, and 4 square feetgrate surface, be sufficient to run the engine at 250 or 300 revolutions per minute with 100 lbs. steam A. We enough. 2. Whal a forced draft, the boiler may be at A. In smooth water, 7 to 8 miles an hour.
(15) F. A. asks: What would be a safe outside pressure for a cylinder of wrought iron, $1 / 2$ inch
thick and 4 feet in diameter, and 8 feet long? A. According to tables given in Wilson's " Treatise on Steam Boilers," the working pressure for such a tube would be
(16) F. M. M. asks: 1 . How large must an engine be to run a boat $121 / 1 /$ feet wide, 75 feet long,
drawing 4 feet of water, at the rate of 30 miles per hour, on a river or bay where the surface is smooth? A. We have some doubts as to whether these conditions could
be fulfilled. 2. Do steamboats on the ocean use salt be fulfllicd. 2. Do steamboats on the ocean use salt
water in their boilers for steam, or do they carry fresh water? A. They ordinarily have surface condensers,
so that the water of condensation is returned to the boilers.
(17) E. S. N. says: Please give your ideas as to how much water an engine 18 inches in diameter by
22 inches stroke, running at 145 revolutions per minute, at 80 lbs . steam, cutting off at about 18 inches, will re quire. We furnished an injector for one of the above dimensions, capable of throwing 900 gallons per hour.
It was found to be insufflicient, and I went to the mill to discover the cause, if possible. The manufacturers of did we. Ifound everythimg set up properly, and the piston and valve were evidently in good order. I finally measured the capacity of the tank which supplied the in jector, and found that it drew 960 gallons per hour.
A. We do not thimk the data are sufficient for an accuA. We do not think the data are sufficient for an accu-
rate calculation. It is possible, however, that some of our readers have made experiments on similar engine
(18) T. W. asks: What size of breast water
wheel, with a fall of 2 feet water, would it require to wheel, with a fall of 2 feet water, would it require to
produce the same power as an overshot wheel of 4 feet diameter, 18 inches face, with a fall of 5 feet water? A. would require a face about $21 / 2$ times as wide.
(19) A. K. says: A. asserts that if a small d a large boiler be set side by side and connected with the top gauge cock of the two boilers, level, when they
are frst flled with water, and then steam is raised, that the water will not remain the same, that the pressure will force the water into the smaller one. B. says tha the waterwill always remain the same as long as the
boilers are connected; that the pressure on the water boilers are connected; that the pressure on the water
will be the same in both boilers, and therefore the water will always assume the same level in each. Which is rights A. The pressures sometimes vary in two boilers
connected in this way; and they should be set in such way that the water cannot be forced from one into the ther under any circumstances.
(20) J. T. G. says: I notice your reply to W. G. in regard to pounding of a steam pump, in which
you recommend the use of a larger air vessel. I think you recommend the use of a larger air vessel. I think
that W. G. can remedy the difficulty by allowing a small quantity of air to enter the pump cylinder at each
stroke, which can be done without sensibly diminishing the amount of water delivered, provided the lift is not so high as to nearly equal the capacity of the pump. That would keep the maximum quantity of air in the air vessel, and I think that the air in the discharge pipe
would have the effect of converting a comparatively rigid column into an elastic one. W. G. can easily try
end of his pump partially open; and if that remedies ing inward to prevent the discharge of water during the ng inward to prevent the discharge of water during the
out-stroke. If W. G. tries this, I wish that he would let us know the result through the Scientific American.
(21) G. H. says: Please decide the following: A. claims that a team of horses can draw a greater distance of 10 or 20 feet. B. claims that, everything else being equal, distance makes no difference, and that he team could pull as many lbs. at a distance of 20 fee as it could at ten or les
cline to B.'s opinion.

line to B.'s opinion. Please tell me the res

Please tell me the relative power of conducting elec
tricity of the principal Matthiessen, the electrical conductivity of the principal

(22) S. R. S. asks: How can lime, or rather phosphate of lime, be precipitated from cod liver oil,
which is perfectly clear and said to contain 2 per cent which is perfectly clear and said to contain 2 per cen
of the phosphate! A. This can only be done by first of the phosphate? A. This can only be done by first
destroying the organic matter of the oil, and then examining the residue for the phosphates with the usual eagents-magnesia solution, barium chloride, nitrate of silver, ammonium molybdate, etc. With so small a percentage of the phosphates, it will be necessary for
you to work with concentrated solutions, and slowly. you to work with concentrated solutions, and slowly. The oil may be oxidized by treating it on the waterbath
with hot hydrochloric acid, with some chlorate of pot with hot hydrochloric acid, with some chlorate of pot ash, added in small quantities at a time. Then evapo
rate down nearly to dryness, and treat with a little strong nitric and a few drops of sulphuric acid. This will take some time if properly done.
(23) J. H. S. says, in answer to J. H. B.'s uery as to a parrot pulling out his feathers: 'rake knife and scrape the inside edge of the bill, and the This is done for feathereating hens; no doubt it will
.
(24) S. R. S. says: I have some dentists pellet gold. I alloyed it with brass and silver. I melted several times, but it was so very brittle that I could notwork it. I then added a $\$ 2 x_{j}$ gold coin, and fused, all together, but it was as brittle as before. I thenfused it and dropped in lumps of pure saltpeter, but it is still a brittle as before. I fused the gold on a lump of harcoal with an alcohol blowpipe. Please tell me how alloy. Theremay be an excess of zinc and copper, or he fusion ether with several small pieces of rosin and a little borax or carbonate of soda, in a small blacklead cracible, and heat to very bright redness over a good fire.
If this does not obviate the difflculty, fuse the alloy P this does not obviate the difflculty, fuse the alloy with about three times its weight of nitrate of potassa
(saltpeter), and treat the mass when cold with dilute sulsaltpeter), and treat the mass when cold with dinate sul huric acid. Pour off the acid solution and fuse the and a together with any silver sulphate adhering to he acid solution may be recovered by adding a little salt or muriatic acid, and fusing the precipitated chlorde of silver with carbonate of soda.
(25) N. S. asks: 1. Can water be decomposed into its constituents (oxygen and hydrogen) with ny considerable rapidity, and in large quantities, by elcetricity A. Yes; providing a large magneto-electric
machine be used. 2. What is the best and cheapest method of generating hydrogen in large quantities? A.
The action of iron or zinc scraps on diuted oil of vitriol The action of iron or zinc scraps on diiuted oil of vitriol
s among the best. A considerable volume of pure hy s among the best. A considerable volume of pure hy
drogen mayaliso be obtained with facility by passing uperheated steam through a large iron tube filled with superheated steam through a large
(26) G. S. D. W. asks: Is there any process y which an engraving can be transferred either to tone or wood, where the printing ink can be made to has been made? A. We know of no satisfactory meth has been made? A. We know of no satisfactory meth-
od whereby this may be accomplished directly. By means of the chromate of gelatin photographic process,
such transfers may be made without great difficulty.
(27) F. M. M. asks: 1. If a steamboat 100 feet long, of 5 feet beam and 4 feet draught, be pro-
vided with one set of common side paddle wheels, and powerenough to run it at the rate of 10 knots per hour would two sets of side wheels, with the power doubled and the revolutions of the wheels doubled, double the speed of the boat? A. No. 2 . If we take the same
boat, side wheels, and power, for running 10 knots per our, and arrange for the side wheels to feather their paddles, what effect would it have on the speed of the oat? A. You might obtain from 10 to 15 per cent more of the engine in useful effect.
(28) W. J. T. asks: 1 . What is the best dark color to paint a laboratory, and what kind of paint must I use9 A. One of the best for this purpose is hellac in alcohol, colored to suit with Vandyke or Spanbh brown, etc. 2. I wish to varnish my benches. What only used, but copal gives good results, also Brunswick black in oil.
Of what should awaste water pipe be made,
resist acids? A. Make it of lead or block tin.
Can you recommend an elementary work on electric hatteries A. Sprague's "Electricity: its Theory,
(29) T. P. H. asks: Can I take a wax impression off type and then electrotype it with a battery?
A. Yes. This is the common method of making elecA. Yes. This is the common method of making elec-
(30) C. M. asks: What are the locations of he various branch mints of the United States? A. A recent authority gives them as Philadelphia, Pa., San Assay offices are situated at New York city, Charlotte
(31) B. L. D. asks: Can you give me a recipe for making paste for sharpening razors, knives,
etc.? A. Mix the finest emery obtainable with a little (32) C. B. McM. says: I hear that four gal lon measures of different capacities are in use, and that
the United States standard gallon contains 230 cubic inches. In the confusion of text-book statements as -" " wine gallon $=231$ cubic inches," "beer gal-
lon $=282$ cubic inches," "American standard gallon= lon =282 cubicinches," "American standard gallon=
58973 grains (Youmans' Chemistry)= nearly 234 cubic inches," and the very extensive ignorance of what is really correct, please repeat the information in a way that may be quoted as authority for the capacity of a United States gallon in cubic inches, and the weight in
grains. A. "The gallon of the United States is the standard or Winchester wine gallon of 231 cubic inches, troy grains of distilled water at 39.83° Fah., the barom eter being at 30 inches. It is equal to 3.785207 liters.
The gallon of the State of New Yorls is of the capacity of 8 lbs . pure water at its maximum density, or 221184 cubic inches.
(33) S. C. D. says: Please give directions for electrotyping cylindrical rollers for impressing upon sheets of wax, accurately, of the proper figure for
honeycomb foundations. The figure for the surface of honeycomb foundations. The figure for the surface of
the cylinders to be derived from sheets of wax foundathen, having the figure corrently impressed upon them. A. This can be done by coating with plumbago, and then electrotyping with copper, in a way familiar to most printers and to all elcectrotyping establishments. The plates can afterwards be bent round a roller, and
(34) J. H. T. asks: There is a piece of gronnd, 100 rods long and 10 rods wide at one end, running to a point at the other, which we wish to divide into 4 equal lots. Please give a rule. A. Let the 100
rods be the base of a triangle, divide it into 4 parts of rods be the base of a triangle, divide it into 4 parts of
25 rods each, and join the apex with each of the three 25 rods each, and join the apex with each of the three
dividing points. You will then have 4 triangles on dividing points. You will then have 4 triangles on
equal bases and between the same parallels, which, ac cording to Euclid, are equal to each other
(35) R. S. asks: What are the chemical qualities of bisulphide of lime, and how can $I_{\text {prepare }}$
it? A. The bisulphide of calcium $\left(\mathrm{C}_{2} \mathrm{~S}_{5}\right)$ is produced by it? A. The bisulphide of calcium $\left(\mathrm{C}_{2} \mathrm{~S}_{5}\right)$ is produced by
boiling milk of lime with sulphur and water, but not saturated. The flltered liquid, on cooling, deposits crys tals whose composition agrees with the formula $\mathrm{C}_{2} \mathrm{~S}_{2}+$
$3 \mathrm{H}_{2} \mathrm{O}$. Exposed to the air, it soon absorbs oxygen, be coming converted into insoluble sulphate of calcium Its aqueous solutions are likewise decomposed. Its reactions with the metallic salts are similar to those of the kaline sulphides.
(36) H. M. S. asks: 1 . Of what is the bronze preparation made and how is it applied to clock fronts? A. Bronze powders are made of various metallic alloys. The gold bronze is usually made of Dutch gold (an alloy
of copper and zinc) and of the bisulphide of tin (aumum of copper and zinc) and of the bisulphide of tin (aurum musivum). They are usually applied to metal work by
means of an oil size or japan varnish. \quad 2. In what way means of an oil size or japan varnish. 2. In what way
can I remove the old bronze? A. Wash first with a solution of washing soda (hot), clean and dry, and then rub with a little benzole, alcohol, or ether.
(37) W. E. W. asks: 1. Of what mixture is the bright red paint usually put upon axes made? A. It and 2 parts turpentine. 2. Is more than one ciat applied A. One coat will suffice. It is best applied with a fine brush, when the metal is warm.
(38) C. M. B. asks: Is the odor emitted by he ailanthus tree unwholesome? A. It is considered so
(39) L. S. \& Co. ask: Is there anything known which would clean the hands from paints and
lacquers without the use of turpentinc? A. A little am monia and benzine or naphtha, aided by a little sand, i often used in stubborn cases; put plenty of good soap and warm water, with a stiff brush o
of pumicestone, will ordinarily suffice.
(40) W. P. S., Jr., says: Can you give me a recipe for making papicr maché? A. Papier maché is ob tained from old paper and the like made into a pulp by grinding with milk of lime or lime water, and a little gum dextrin or starch. This pulp is then pressed into ture, and finally varnished. The pulp is sometimes mixed with clay (kaolin), chalk, ete.; and other kind are made of a paste of pulp and recently slaked lime
This is nsed for ornamenting wood, etc. (41) M. P. B. says, in reply to a correspond ent who asked how to prevent his water filter from
getting choked up: Fit in the filter, on the top of the getting choked up: Fit in the filter, on the top of the
charcoal, a piece of board having in the center a circular hole from two to four inches in diameter, a according
to the size of the filter, force in this a sponge eotightly to the size of the filter, force in this a sponge so tightly as to prevent its freepassage. This sponge will absorb readily the gross impurities of the water, and can easily taken out and cleaned once or twice a week.
(42) A. C. S. asks: 1. Is there any reason why lightuing rod points should always be bright, if the points are kept suffciently sharpl A. It makes no
difference if the points are not bright. 2. If lightning rods put up in the ordinary way above the roof ter minate in the eaves' spouting of the house, and said spouting had good ground connections, would this not many feet of rod and many dollars of thereby sav The arrangement you suggest would be good. Make a thoroughlygood ground connection with leaders, have all jaints well soldered, and you may dispense with the rod as you propose.
(43) J. A. W. says: Having occasion to do some copper plating some time ago, I dissolved sul-
phate of copper in water in a glass jar. I then poured tt off into my battery, and there was soma left in the jar. I threw a emall plece of iron into it and left it fo
some days. I then took it out; and to my surprise, I
found that it had been perfectly plated with copper.
Pleaselet me know the cause A. The reaction you Please let me know the cause? A. The reaction you
note is taken advantage of to cheaply copper plate small articles of cast iron. See answer to J. O. M., p. 347, vol. 36. In the presence of water, the reaction is as

CuSO_{4}

 FeIron. FeSO_{4} Sulphate of copper. Iron. Sulphate of iron. Copper. As the iron is a more positive metal than copper, it dising portions of the iron becoming coated with the pre-
ipitated copper.
(44) A. G. asks: Is the silver, for a reflectng telescope, put on the back of the glass the same as on looking glasses? A. No. Only one side of the glass ground and polished to the shape required. The sil-
vering is done on this side; and then, with the softest buckskin and the finest rouge, the surface of the silver polished for the reffecting surface. In cities where as is used, it will not retain its brilliuncy very long; vered, which is only the work of a few hours when a person has become accustomed to it.
(45) A. L. B. says: 1. I understand that, in odeme hemistry, the acids and alkaliesare the two exonly difference being the radical. In the reaction of nitric acid, $\mathrm{HO} \mathrm{NO}_{2}$ or HNO_{3} on potassic hydrate, KOH
is $\mathrm{KO} \mathrm{NO}_{2}$, or KNO_{3}, and $\mathrm{H}_{2} \mathrm{O}$. Which molecule loses is $\mathrm{KO} \mathrm{NO}_{2}$, or KNO_{3}, and $\mathrm{H}_{2} \mathrm{O}$. Which molecule loses
the oxygen atom, and why should one part with it more the oxygen atom,
than the other?

$\underset{\text { Nitric acid }}{\mathrm{HNO}_{3}}+\underset{\substack{\text { potassic } \\ \text { hydrate }}}{\mathrm{KOH}}=\underset{\substack{\text { potaseric } \\ \text { pitrate }}}{\mathrm{KNO}_{3}}+\underset{\text { water }}{\mathrm{H}_{2} \mathrm{O}}$

In this reaction the potassium is considered, by virtue
of its greater affnity, as replacing the hydrogen atom in of its greater affinity, as replacing the hydrogen atom in the hydric nitrate; the hydrogen in turn satisfying the
OH gronp to form water. These hydrates are similar H gronp to form water. These hydrates are similar ments are widely different. 2. What are oxides in modern chemistry? A. The bodies formed by the direct combination of oxygen with the elementary bodies are called oxides. With water some of these oxides form

(46) J. R. M. asks: To have a circular saw n well, should the mandrel have a little end play if it is
end the saw is not true or the carriage runs crooked, end play of the mandrel to the extent of the deviations will elieve the strain upon the saw. But if the carriage uns true and the saw true, the mandrel should have no nd play.
Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the result stated:
M. S. M.-It is a quartz crystal, the opposite sides of hich have been ground flat, probably by artificial

COMOUNICATIONS RECEIVED.

The Editor of the Scisntific Ambrican acknowledges, with much pleasure, the receipt of original contri butions upon the following subjects:
On a Battery and Electric Clock. By J. On a Battery and Electric Clock. By J.
On Antl-Water Drinking. By C. P. W. On Utilization of Sewage. By Dr. H. D. On Aerial Navigation. By C. W.
Ont he Ash-Colored Salamander.

HINTS TO CORRESPONDENTS Correspondents whose inquiries fail to appear should repeat them. If not then published, they may conclude
that, for good reasons, the Editor declines them. The adt, for good reasons, the Editor declines
adress of the writer should always be given. address of the writer should always be given.
Inquiries relating to patente, or to the patentability Inquiries relating to patents, or to the patentability
of inventions, assignments, etc., will not be published re thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address s given.
Hundreds of inquiries analogous to the following are sent: "Who makes machinery suitable for making flour
barrels? Whose is the best theodolites Who sells barrels? Whose is the best theodolite? Who sells leam whistles? Whose is the cheapest silk, suitable
for balloons? Who makes the best engraving machine or transferring designs to copper?" All such personal nquiries are printed, as will be observed, in the colmnn of "Business and Persunal," which is specially et apart for that purpose, subject to the charge menioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.

OFFICIAL
INDEX OF INVENTIONS OR wirci
Letters Patent of the United State
Granted in the Weok Ending June 5, 1877,
AND EACH BEARING THAT DATE
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list,
ncluding both the specifications and drawings, will be furnisied from this offlee for one dollar. In ordering, and remit to Munn \& Co., 87 Park Row, New Fork city.

Bench dog, W. Lyle Blacksmith's tongs, J. Van Matre Boller furnace, etc., J. E. Crowell
Bottle stopper, C. De Quillfeldt Bottles, etc., sealing, C. L. Darby
Bottling machine, W. H Kelly... Bracket, J. B. Sargen Brech, loading area arm, v. Borv.....
Breech loading fire arm, J. Schudt. Bridge, E. S. Sherman Button, clasp, L. B. Colin.......... Calender and washing list,J. C. Coomb Car cou Car coupling, W. Duesle
Car lavatory, \mathbf{c}. E. Lucas
Carriver Carriage perch stay, J. R. McGu
Chair convertible, J. P. Tru Chair, folding, B. F. Little Chicken coop, Sullivan \& Retallic
Chicken coop, R. L, \& N. J. Todd Chimes draft regulator, W. H. Churn, T. J. Parrish
Churn, reciprocating, H. C. Sperr
Churn, rotary, A. J. Borland
Churn, rotary, Hatton \& Record.
Clasp hook, spring, J. W. Knaus
 Corn dropper, J. P. Simmons... Corset skirt supporter, T. F. Hamilton.
Cotton scraper, etc., M. Roby. Cultivator, W. E. Dewey....
Cultivator, A. S. McDermott. Cuptivator, A. S. McDermot
Cup ard. W. H. Sallada...
Curry comb, Bennett \& Moody
Curry comb, P. Miller
Desk, school, C. H. Pr
Drawing instrument,J. R. Peel.
Drill hoe, E. F. Pryor
Drill hoe, E. F. Pryor
Easel, T.'. Fisher...
Eccentric, reversible, Lafayette \& Stron
Eleenatro, etc, telescopic, W. R. Comings
Elliptic spring, N. J. TNI Elliptic spring, N. J. Tilghman.
Engine frame, S. W. Putnam Engine frame, S. W. Putnam .
Engine exhaust, C. T. Parry Engine valve motion, H. Haeri Feed rack, W. H Howard.......
Feed water heater, N. W. Kirb Fence, E. H. Perry.
 Fire front. G. W. Purcel.
Fire kinder, J. G. Distler
Fireproof column, Drake \& Wight
Flourbin and sifter, F. M. Mahan. Fluting and polishing, C . Johnson Flyting machine, Keller \& Olmesd Fountain. portable, W. H. zin Fruit crate, G. Willard. Fuel, pressing, stalks, etc., for, Davis \& Fisk Fulling mill, J. Hunter. Furnace bottom construction, P. D. Nicols. Gage cock, boller, D. T. Ellis............
Gas apparatus, portable, D. H. Irland Gate, B. R. Baker
Gearing, oscillating, N. P. Otis.... Glassware, making, C,
Grate, J. H. Mearns.
Griddle, Griddle, H. C. Milligan Game attachm. Schmitt.. Harness saddle tree, W. L. Frizzell Harrow, H. I. Lund.....
Harvester, Philleo \& Co Harvester, Philleo \& Cox.
Harvester corn, B. OBgood Harvester finger bar, H. L. Hopkins
Harvester rake Harvester rake, R. Emerson..
Harvesterrake, R. D. Warner.
Harvester reels, Harvester reels, H. A. Adams. Harvestercutter, Hessing, R. Kent Hatter's measure, J. A. Harrington Hay derrick, etc., R. N. B. Kirkham. Hay elevator, E. L. Church...
Hinge and door, safe, P. F. K. Hinge and door, safe, P. F. King
Hog catcher, J. H. Eames Hog catcher, J. He Eames.
Holsting machine, H. J. Re Hoisting machine, G. H. Reynolds (f$)$
Hoisting machine, F. G. Hesse...... Hoisting machine, F.
Holdback, J. W. High
Honey box, Johnson \& K e eley. Hoopskirt spring, etc., A. Benjamin. Hydrocarbons, extracting, W
Ice cream freezer, J. Solter... Ice house, E. Schandein Ice machine, A. T. Ballantine.
Indicator for bellows, J. E. Indicator for bellowas, J. E. Treat.
Iron and steel cementation, J. W. Iron and steel cementation, J. w. Ho........
Iron from cold short pig, etc., c. c. McCarts
 Keyholeguard, C. H. Covell (r) Label holder, J. E. Sweetland Lathes, truing work in, A. Hat

Lithographic press, c. C. Maurice
Locomotive light, A. Dreseall Locom take-up, J. Lyall....
 Mandrel, expanding, A mann \& Harker Manure drill, A. C. Hurley..
Marine ram, N. H. Borgfeldt
Match safe, J. A. Field
Medicine case, J. C. Millard
Milk cooler, J. Bissonett

Mirror, adJustable, S. R. Scottron.. Motion, converting, C. Chadwick...
 Oll well rope socket, H. Baddock (r).
Ore, reducing ntekel, w. B. Tatro Ore, reducing nicke,
Organ swell, reed, Kelly \& Hebard.. Paper barrels, making, E. M.
Paper box, P. B. Pickens...

DESIGNS PATENTED 10,030 to 10,032.-Embromert.-E. Crisand, New Haven Conn.
10,033.-Lock-CABE.-R. Flocke, Newark, N. J.
$0,034 .-$ Botrces.-J. H. Harrison,
 10,035 to 10,0037.-CARPET.-H. S. Kerr, Philadelphia, Pa
10,038, 10,0999 - CARPETS.-T. J. Stearns, Boston, Mass. 0,040.-MOULDING.-R. M. Merrill et al., Laconia, N.H
10,041 to 10,044 .-OIL CLOTH.-C.T. Meyer et al., Bergen 10004.--STUDS, ETC.-J. W. Muller et al., Newark, N. J.
10,046.-BOOK CASEs.-J. W. Schuckers, New York city. [A copy of any one of the above patents may be had by
remitting one dollar to MONN\& Co, 37 Park Row, New York eity.]

Chaturdiamaty.

the scientific Grain \& Middlings Mill. $3=\mathrm{F}$ Z Send for our price ist, as this ma
not appearazan.
A. W. STRA UB © CO., NO MORE SLIPPING BELTS. MY NEW
 THE NEW GERMAN PATENT LAW

