time are engaging the closest scrutiny of naturalists. It is of the flower. It is not certain what attracts the insects, trate on a magnified scale, let the reader imagine a surface a true trap in one sense-inasmuch as it captures the vic- which are usually of the species known as the meat fly and thickly covered with strong iron posts, on the sides of which tim which ventures near it; but it relies on little or no me- the common house fly. They do not seem to seek for the are numerous keen barbs pointing downward. Then bechanical meansfor securing its prey, but stupefies the living small quantity of nectar concealed, and yet they cluster tween these posts, suppose that jars overflowing with honey insect by its odor. The flower is horn-shaped, about 11 about the fatal opening, as if drawn by some overpowering are placed. An elephant, let it be imagined, attracted by inches in length, with an opening some 5 inches in diame- fascination. Overcome by lethargy, they fall inert upon the the profusion of sweetness, inserts his trunk between the ter. The color within is a dull dark violet, while the inte- flower, are lightly held by the bristles, and finally die asphyx- posts and finds easy access to the honey. But while he can rior of the spathe is lined with black, hooked bristles, the iated by the carbonic acid which the plant disengages in force his proboscis downward past the barbs turned in that


Figs. 1 and 2.-AROM DRACUNCULUS.


Fio. 3.-MENTZELIA.


Fip. 4.-GRONOVIA SCANDENS.
direction, when he attempts to withdraw it he finds the keen points catch in the flesh, and render it impossible to do so. A terrible struggle follows, the unfortunate animal twisting and writhing in every direction, until finally by an Herculean effiort the head is torn from the body, and the latter becomes digested by some potent gastric juice, exuding from the colossal organism of which the trap forms but a portion. Of course this is vastly exaggerated, and it would puzzle an elephant to pull his own head off; but if for the post studded trap, we substitute the surface of a fiower, and if we replace the elephant by a fiy, we shall have conceived an accurate picturo of what takes place in the peculiar receptacle with which Nature has provided the mentzelia ornata. This is very beautifully shown in Fig. 3; and at A , in same figure, is represented the barbed bristles grasping the highly magnified proboscis of the fily. Between the barbed bristles are mush-room-shaped projections, from the summits of which a viscous nectar exudes. This is the honey bait which induces the insect to insert his trunk between the fatal barbs. There is still another plant, physianthus albens, which captures butterflies by grasping the proboscis. The construction of the flower is quite complicated, so that the insects are compelled to insert their trunks through a narrow and winding passage in order to reach the nectar. The organ then necessarily comes in contact with an adhesive substance, which prevent its removal.
The Gronovia scandens, Fig. 4, is another plant trap, which catches no fies nor possesses any such wonderfully adapted devices as the plants already described. It simply has its branches covered with double barbed bristles of great strength which attach themselves to anything brought in contact wilh them. The bristles are strong enough to hold lizards, as represented by our engraving, the points inserting themselves in the interstices of the scaly covering of the reptile. Of course the lizard thus held starves to death, and reptile. Of course the lizard thus held starves to death, and
small birds often follow a like fate. We are indebted to $L a$ small birds often follow a lik.
Nature for the illustrations.

## Popular Fallacies.

Night air and damp weather are held in great horror by multitudes of persons who are sickly or of weak constitutions; consequently, by avoiding the night air, and damp weather, and changeable weather, and weather that is conweather, and changeable weather, and wealher too hot or too cold, they are kept within the sidered too hot or too cold, they are kept within doors the
much largest portion of their time, and as a matter of course much largest portion of their time, and as a matter of course
continue invalids, more and more ripening for the grave continue invalids, more and more ripening for the grave
every hour; the reason is, they are breathing an impure atmosphere nineteen-twentieths of their whole existence.
As nothing can wash us clean but pure water, so nothing can cleanse the blood, nothing can make health-giving blood, but the agency of pure air. So great is the tendency of the blood to become impurein consequence of waste and useless matters mixing with it as it passes through the body, that it requires a hogshead of air every hour of our lives to unload it of these impurities; but in proportion as this air is vitiated, in such proportion does it infallably fail to relieve the blood of these impurities, and impure blood is the foundation of all disease. The great fact that those who are out of doors most, summer and winter, day and night, rain or shine, have the best health the world over, does of itself falsify the general impression that night air or any other out-door air is unhealthy as compared with in-door air at the same time.
Air is the great necessity of life; so much so, that if deprived of it for a moment, we perish ; and so constant is the necessity of the blood for contact with the atmosphere, that every drop in the body is exposed to the air through the medium of the lungs every two minutes and a half of our existence.
Whatever may be the impurity of the out-door air of any locality, the in-door air of that locality is still more impure, because of the dust, and decaying and odoriferous matters which are found in all dwellings. Besides, how can in-door air be more healthy than the out-door air, other things being equal, when the dwelling is supplied with air from without?
To this very general law there is one exception, which it is of the highest importance to note. When the days are hot, and the nights cool, there are periods of time within each twenty-four hours, when it is safest to be in-doors, with doors and windows closed ; that is to say, for the hour or two including sunrise and sunset, because about sunset the air cools, and the vapors which the heats of the day have caused to ascend far above us, condense and settle near the surface of the earth, so as to be breathed by the inhabitants; as the night grows colder, these vapors sink lower, and are within a foot or two of the earth, so they are not breathed. As the sun rises, these same vapors are warmed, and begin to ascend, to be breathed again, but as the air becomes warmer, they are carried so far above our heads as to be innocuous. Thus it is that the old citizens of Charleston, S. C., remember, that while it was considered important to live in the country during the summer, the common observation of the people originated the custom of riding into town, not in the cool of the evening or of the morning, but in the middle of the day. They did not understand the philosophy, but they observed the fact that hose who came to the city at mid-day remained well, while those who did so early or late suffered from it.
All strangers at Rome are cautioned not to cross the Pontine marshes after the heat of the day is over. Sixteen of a ship's crew, touching at one of the West India islands, slept
fever in a few days, while of two hundred and eighty, who were freely ashore during the day, not a single case of illness occurred. The marshes above named are crossed in six or eight hours, and many travelers who do it in the night are attacked with mortal fevers. This does, at frst sight, seem to indicate that night air is unwholesome, at least in the locality of virulent malarias, but there is no direct proof that the air about sunrise and sunset is not that which is pro ductive of the mischief.
For the sake of eliciting the observations of intelligent men, we present our theory on this subject.
A person might cross these marshes with impunity, who would set out on his jourgey an hour or two after sundown, and finish it an hour or two before sun-up, especially if he began that journey on a hearty meal, because, in this way, he would be traveling in the cool of the night, which coolness keeps the malaria so near the surface of the earth as to nevent its being breathed to a hurtful extent.
But if it is deadly to sleep out of doors all night in a malarial locality, would it be necessarily fatal to sleep in a house in such a locality? It would not. It would be safer to sleep in the house, especially if the windows and doors were closed. The reason is, that the house has been warmed during the day, and if kept closed, it remains much warmer during the night indoors than it is outdoors; consequently, the malaria is kept by this warmth so high above the head, and so rarefied, as to be comparatively harmless. This may seem to some too nice a distinction altogether, but it will be found throughout the world of Nature that the works of the Almighty are most strikingly beautiful in their minuta, and these minute are the foundation of His mightiest manifestations.
Thus it is, too, that what we call fever and ague might be banished from the country as a general disease, if two things were done. 1. Have a fire kindled every morning at daylight, from spring to fall, in the family room, to which all the family should repair from their chambers, and there remain until breakfast is taken. 2. Let a fire be kindled in the family room a short time before sundown; let every member of the family repair to it, and there remain until supper is taken.
In both cases, the philosophy of the course marked out consists in two things. First. The fire rarefes the malaria and causes it to ascend above the breathing point. Second. The food taken into the stomach creates an activity of cir culation which repels disease.-Hall's Journal of Health.

## The Extension of the Plague.

Our recent English medical exchanges mention, with undisguised apprehension, the fact that already early this spring authentic observers state that the plague has broken out in Bagdad, and is rapidly increasing there; and information from other sources renders it probable that the disease has shown itself in other places in the vicinity of that city, some of which have not suffered before since the new development of the disease in Mesopotamia, three or four years ago. The progress of the efidemic in and about Bagdad last year shows that each year since its reappearance in that district it has covered a wider area, and it will be remembered that last yearit crossed the Turco-Persian frontier, and broke out at Shuster, in Khuzistan. From the phenomena of the epidemic to this period it was feared, especially by the physicians on the spot, that, if it should recur in the present year, it must be expected to extend over a still wider area, and show itself in even a more aggravated form than had yet been observed. This opinion is concurred in by Surgeon-Major Colville, the medical offcer attached to the British Embassy at Bagdad, and is expressed in his offlcial report, on the subject of the last and previous year's outbreak.
The Turco-Russian struggle in Asia Minor, and the massing of Persian troops on the western frontier of that coun try, add an additional and most grave factor to this ominous intelligence.
It has been so long since Christian Europe has suffered from this terrible disease that most medical men have never seen a case, and, indeed, for awhile, epidemiologists flattered themselves it had "died out." They yet say that a thorough system of sanitation will certainly oheck its adance.
Let us hope so; for of all pestilences which have ever scourged humanity, and desolated empires, none approach in magnitude those of the plague. Under the name of "the black death," it fills, as Hirsch remarks, one of the darkest pages in the history of the human race. It devastated every known country of the earth, and penetrated to the remotest mountain hamlets and granges, sometimes sweeping away in a few days every inhabitant, leaving not one to remember the name or to inherit the goods of the family or the village. Long years afterward, travelers would come upon these unknown villages, the houses rotting, the bones of the plague-stricken owners bleach ing in the rooms and streets, and no one to say who they had been.
As an epidemic disease, it no doubt spreads from India, that mother of pestilence, where, in the province of Kutch and Guzerat, it is found as an endemic of great malignancy, Far more fatal in its historical appearance than the cholera, it is well that the medical mind of Europe is on the alert to meet its approach with the most energetic measures; and should they fail, it will devolve upon us to lose no time in taking up the defensive in the most energetic manner.-

Education in Germany.
The compulsory school laws of Prussia are frequently pointed to as models for similar laws, perhaps with the hope that by imitating her lower schools we can bring up our high schools to an equal rank with hers, and place our universities on a level with those which are producing the most finished scholars, the deepest thinkers, and the greatest investigators. We are likely to forget that the conditions aro different, and especially that nascitur, non fit, is as true of a chemist as of a poet. The state of popular education in Germany is, however, a matter of interest, and is best illustrated by the following table, showing the percentage of unschooled men among the recruits from different German provinces :

| Prussia | Per cent. |
| :---: | :---: |
| Bavaria | .. $1 \cdot 79$ |
| Saxony | . 0.23 |
| Würtem | . 0.02 |
| Baden. | . 0.22 |

## Hesse ....... <br> Thuringia

Alsace...
Per cent.
$\ldots .35$
$\ldots . .1 .09$
0.0 .09

These figures seem to indicate a higher grade of intelligence and wider diffusion of knowledge among all classes, for recruits are from every class, than in Austria, although in the latter the figures are arranged sodifferently as to make any accurate comparison of Austria and Germany rathe difflcult and unsatisfactory.

| Namb or ditamer |  |  |  | $\begin{gathered} \text { Nanbor of of } \\ \text { Bection it } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Bohemia | 4,190 | 1254 | 77 | 13 |
| Bukowina | 167 | 3,121 | 9 | 1 |
| Dalmatia. | 241 | 1,864 | 12 | 2 |
| Galacia. | 2,374 | 2,341 | 15 | 1 |
| Carinthia. | 318 | 1,060 | ? | 2 |
| Carniola | 234 | 1,187 | 48 | 2 |
| Custrin. | 396 | 1,496 | 88 | 5 |
| Moravia | 1,866 | 1,082 | 78 | 5 |
| Lower Austria | 1,267 | 1,578 | 76 | 5 |
| Opper Austria | 506 | 1,455 | 85 | $\stackrel{2}{2}$ |
| Salzburg | ${ }_{690}^{155}$ | $\begin{array}{r}982 \\ 1,657 \\ \hline 1\end{array}$ | 85 59 | ${ }_{8}^{1}$ |
| Bchlesia | 433 | 1,208 | 77 | 4 |
| Tyrol......... | 1,826 | 457 | ? | 6 |
| Total | 14,763 |  |  | 51 |

Over 3,000 teachers' positions are said to be vacant at the present time.

## Bleaching sutk and Wool.

The methods now in use for bleaching silk, wool, and all animal fibers, such as sulphurous acid, alkalies, soap, etc., are so imperfect that Tessié du Motay has patented the following process, involving the use of binozide of barium, with or without the addition of permanganates. The binoxide of barium is pulverized and subjected to the action of carbonic acid to remove any unconverted caustic baryta present. It is then thrown into boiling water, and after the bath has partially cooled the materials to be bleached are introduced and the bath kept at a temperature of $86^{\circ} \mathrm{Fah}$. to $194^{\circ}$ Fab. for two hours; silk from wild silkworms requiring a higher temperature than wool, goat's hair, and the like. It is then taken out and washed, put into an ecid bath, then washed again. If necessary, the barium bath is repeated, as also the subsequent washings. If this second bath of binoxide of barium does not produce the requisite whiteness, it is introduced into a solution of permanganic acid or permanganate of magnesia before the last washing.
Binoxide of Barium, $\mathrm{Ba}_{2} \mathrm{O}_{2}$, is made by subjecting the oxide or caustic baryta, Ba O , to a stream of oxygen or common air at a high temperature. Its bleaching action is probably due to the formation of peroxide of hydrogen in solution in the bath.

## An Alloy or Tin and Phosphoruc.

At the Graupen Tin Works, in Bohemia, an alloy of tin and phosphorus is made containing the greatest possible quantity of phosphorus which the tin is able to retain without losing any of it upon repeated meltings. This compound,
is neither entitled to the name of alloy nor is it a phosphide of tin, is employed in the manufacture of phosphorus-bronze. In the manufacture of phosphorus-bronze, by alloying copper with phosphorus-tin, no other precautions require to be observed than in the preparation of common bronze. As the different properties of phosphorus-bronze depend upon he proportions of phosphorus and of tin, two kinds of phos-horus-tin are prepared. No. 0 contains 5 per cent, and No. , 2t per cent of phosphorus. These two kinds suffice to make the greater part of all the desired mixtures. For special purposes, the Graupen Works make to order phosphorus-tin with any desired quantity of phosphorus not exceeding 5 per cent, which is the highest possible limit. It is claimed that phosphorus-bronze may be manufactured by the use of this phosphorus-tin as much as 40 per cent cheaper than that now in the market, while it will only cost 8 per cent more than the ordinary tin and copper bronze.
No details are given of the method employed to make the phosphorus combine with tin, but the low melting point of tin as compared with that of copper would indicate that this would lead to the great saving promised above.

## American Institute Exhibition.

The forty-sixth Exhibition of this Institute will open September 12, in this city, Parties having novelties which they intend to bring to public notice should at once address the General Superintendent for blanks and information. The medals, it is said, have been increased and special awards will be made upon a number of articles

American Inventions for New South Wales. Writing from Sydney, under date of April 14, the Times correspondent thus refers to the supply of locomotives and carriages from America: Our appearance at Philadelphia has drawn the attention of American manufacturers to us in a most marked and unexpected degree. A country that, like New South Wales, is rolling in wealth must be a country that is able to buy, and a country that is able to buy is exactly the country that American manufacturers have been anxiously looking out for. Our representatives at Philadelphia have come back strongly impressed with the fact that there are many things that the Americans can supply us with advantage. Our Government has an offer from Messrs. Baldwin \& Co. to furnish a locomotive engine for about £1,000 less than the cost of an English engine, and to leave the payment open until the engine has been thoroughly proved and approved. A Pullman's sleeping car and an or dinary passenger car have already been ordered, and A merican wheels, axles, rails, and brakes are strongly pressed on ouracceptance. As our Government engineers are all of the English school, American novelties will have a hard battle to fight to win official acceptance, but the demand for economy in railway construction and working is so great that people and Parliament will press on the Minister for Public Works a fair trial for any American novelties that may seem to be suited to our wants. The English manufacturers, therefore, who have hitherto supplied us must look to their laurek.-Capital and Labor.

## Man's Place in Nature.

Concerning man's true place in Nature, Haeckel says:
"Whatever part of the body we consider, we find upon the most exact examination that man is more nearly related to the highest apes than are the latter to the lowest apes. It would therefore be wholly forced and unnatural to regard man in the zoological system as constituting a distinct order, and thus to separate him from the true ape. Rather is the scientific zoologist compelled, whether it is agreeable to him or not, to rank man within the order of the true ape (Simiæ).
To whatever minutise of detail the comparison is carried we reach in every case the same result. Between man and the anthropoid apes there are the closest anatomical and physiological resemblances. In form and function, there is the most exact agreement between all the corresponding bones of the skeleton of each; the same arrangement and structure of the muscles, nerves and entire viscera, and of the spleen, liver and lungs-the latter being a matter of especial significance, for between the manner of breathing and the process of nutrition there is the closest relation.
The brain, also, is subject to the same laws of development, and differs only with regard to size. The minute structure of the skin, nails, and even the hair, is identical in character. Although man has lost the greater part of his hairy covering, as Darwin thinks, in consequence of sexual selection, yet the rudimentary hairs upon the body correspond, in many respects, to those of the anthropoids. The formation of the beard is the same in both cases; while the face and ears remain bare. Anthropoids and men become grayhaired in old age. But the most remarkable circumstance is that, upon the upper arm, the hairs are, in both cases, directed downward, and upon the lowerarm upward; while in the case of the half-apes it is different, and not as soft as that of man and the anthropoids.
The eye, on account of its delicate structure, is peculiarly suitable for comparisons of this kind; and we find here the greatest similarity: even inflammation and green cataract occur. under the same circumstances, in both. See, also, occur. under the same
There is no more striking proof that man and the anthropoid apes have the same anatomical and physiological nature, and require the same food, than the similarity of their blood. Under the microscope the blood corpuscles are identical in form and appearance; while those of the carnivora are clearly different from them.
It may now be interesting, in confirmation of what has been said, to refer to the family life, and, if one may so speak, to the mental and morallife of the anthropoids. Like man, the ape provides with exceeding care for its young, so that its parental affection has become proverbial. Connubial fidelity is a general and well known virtue. The mother ape leads its young to the water, and washesits face and hands in spite of its crying. Wounds are also washed out with water. The ape, when in distress, will weep like a human being, and in a manner that is said to be very affecting. Young apes manifest the same tendencies as human children. When domesticated, they are in youth docile and teachable, and also, at times, like all children, disobedient. In old age they often become morose and capricious. Most apes construct huts, or, at least, roofs, as a protection from the weather, and sleep in a kind of bed.
One peculiarity is alone common to them and man, and this is the habit of lying upon the back in sleep. In battle they defend themselves with their fists and long sticks; and, under otherwise like circumstances, they manifest like passions and emotions with man: as evenge and sympathy. In death, especially, the ape face assumes a peculiarly human-like and spiritual expression, and the sufferer is the object of as genuine compassion as exists in the case of man. It is also well known thatapes bury their dead, laying the body in a secluded spot, and covering it with leaves. Regarding the domestic life of the ape, Darwin says, in his "Descent of Man" (vol. 1, p. 39):

We see maternalaffection manifested in the most trifling details. Thus Rengger observed an American monkey (a Cebus) carefully driving away the tlies which plagued her infant; and Duvancel saw a Hylobates washing the faces of her young ones in a stream. So intense is the grief of female monkeys for the loss of their young, that it invariably caused the death of certain kinds kept under confinement by Brehm in North Africa. Orphan monkeys are always adopted, and carefully guarded by other monkeys, both males and females. One female baboon had so capacious a heart, that she not only adopted young monkeys of other species but stole young dogs and cats, which she continually carried about with her. Her kindness did not go so far, however, as to share her food with her adopted offspring; at which Brehm was surprised, as his monkeys divided everything quite fairly with their own young ones. An adopted kitten scratched the above-mentioned affectionate baboon, who certainly had a fine intellect, for she was much astonished at being scratched, and immediately examined the kitten's feet, and without more ado bit off the claws."
The number of characteristics possessed in common by man and the higher apes is, indeed, very great, and includes not only physical and emotional but even intellectual qualiDr. Holbroot

## Special Notice.

Persons who have sent numbers of the Scientific Amer Can to this office, for the purpose of having them bound, will please call or send for them immediately.
Some of the volumes extend back to 1860, and as we need he room they occupy, we shall dispose of those not claimed within ten days from date of this paper.

Munn \& Co., 37 Park Row, New York.

## DECISIONS OF THE COURTS

United States Circuit Court.-District of New Jerse
biAmL bTRAP PATENT.-GEORGE CROUCH vg. WILLIAM ROEMER.


## NEW BOOKS AND PUBLICATIONS.

The Economic Theory of the Location of Railways By Arthur M. Wellington, C.E. Price $\$ 2.00$. New The author of this book is thoroughly conversant with his subject. and his statement that the book has gradually grown from a few notes into a character of the work. He asserts that "all our rallways are uneconomi-,
cally located," and "in many cases these errors are shockingly evident." If these statements are true, he is rightin stating that "there is something dering." He considers that other countries have made lamentable blunders in locating their rallroads, so that the suffering stoccholders of
American lines may take comfort from the thought that others are or may be as badly off
Fruit and Bread. A Scientific Diet. By Gustav Schlickeysen. Translated from the German by M. L.
Holbrook, M.D. With an Appendix. Illustrated. Holbrook, M.D. With an Appendix
New York city: M. L. Holbrook Co.
The author and translator of this little treatise are firm bellevers in vegetarianism, and present in a highly attractive form the main arguand systematically treated, and although the conclusions at which the
author arrives are greatly, at variance with modern belief and practice author arrives are greatly at variance with modern belief and practice,
the book is nevertheless entitled to proper and reppectful consideration.
Mlustrations are given of the teeth and stomachs of these are compared with the simillar organs existing in man, so exhibiting in a clear and satisfactory manner the pe fect adaptedness of the latter to a purely vegetable regimen, which is certainly somethingmore than merels
accidental. Altogether the book is well worthy of perusal by others than accidental. Altogether the book is well worthy of perusal b
Theoretical Naval Architecture: a Treatise on the
Calculations involved in Naval Design. By Samuel J. Calculations involved in Naval Design. By Samuel J. P. Thearle, F.R.S.N.A., etc. Two Volumes; T
Plates. New York city: G. P. Putnam's Sons. This book is designed to meet the requirements of both those wh those who are much further advanced. Numerous formuly and ule
clearls clearly stated will enable the former to perform without much difficulty the ordinary routine of the draughting office, while ample opportunity is gone forth. The book is divided into sixix parts. Part I. embraces the cal culations relating to the forms and dimensions of ships. II. those relating
strength of ships. IV. and V. to their propulsion by sails and by steam en-
gines ; while Pa $t$ VI. treats of the calculations relating to steering. An excellent book of plates and tables accompanies the text.
Kemlo's Watch Repairer's Handbook: being a complete guide to the young beyinner in taking apart, putting together, and thoroughly cleaning the English lever and
other foreign watches, and all American watches. By
F. Kemlo, Practical Watchmaker. With Illustrations. Price \$1.25. Philadelphia, Pa. : Henry Carey Baird
\& Co. \& Co.
of clocks and watches has excited killedfollowers of the art have been allowed to contribute to its pages, so a concisactical worth of the information given can be fully relled upon. A concise history of timekeepers is followed by a clear and exhaustive cles on cleaning, putting tever watch, which in turn is followed by articles on cleaning, putting together, and the conditions necessary to pro-
duce a good English watch. American watches deservedly engare considerable attention. Papers on repairing watches, cleaning and repairin clocks. and a short description of the necessary tools complete the book. Recent Progress in Sanitary Science. By A. R. Leeds. Salem, Mass. : Printed at the Salem Press. This isa reprint of a paper read at the Lyceum of Natural History,
October 9 , 1876, by the well घnown Professor of Chemistry at the Stevens Institut
Williams' Tourist's Map and Guide to Colorado and
the San Joan Mines. Price 50 cents each. New The San Joan Mines. Price 50 cents each.
York city: H. T. Williams, 46 Beekman street.
Two well edited publications, deserving the attention of travelers and

Inventions Patented in England by Americans.
Boots and shozs. June 7 to June 15, 1877, inclusiv Bray, Newton, Mass.
Boots And Shoes. - Mellen Bray, Newton, Mass.
Electro-MAgNetic Motor.-W. W. Gary, Washington, D. C.
FURNACES.-J. J. Storer, New York city.
GAS.-M. H. Strong Bronel
GAS.-M. H. Strong. Brooklyn, N. Y.
GAS APPARATUS. - D. C. Smith, East Northwood, N. H.
GAS APPARAYUS.-D. C. Bmith, East Northwood, N. H.
GAS MACHINS. T. F. Rowland, Greenpoint, N. Y.
MINERAL WOOL APPARATUS.-A. D. Wlbers, Hoboken, N. J.
MOTIVE POWER.-W. G. Smith et al., New York city.
Power Looms.-James Long, Philladelphia, Ya.
Pulverizing Machines.-J. J. Storer, New York city.
REFIGERTING AppARATUS.-B. J. B. Mills, Lexington, Ky.
SEWING MACHINES.-C. H. Warner, Sturbridge, Masg.
SEwiNG MACHiNES.-C. H. Warner, Sturbridge, Mass.
SHEET Metal UTENSILS.-F. G. Niedringhaus, St. Louls, Mo. Sheet Metal Utensils.-F. G. Niedringhaus,
Valve Gear.-E. Cope et al., Hamilton, Ohio.

## zerent Amexican and foretgn zatents.

## Notice to Patentees.

Inventors who are desirous of disposing of their patents would find it greatly to their advantage to have them illustrated in the Scientific AmrrICAN. We are prepared to get up first-class wood Enarainnas of inven-
tions of merit, and publish them in the Scientific American on very tions of merit, and publish them in the Scientific American on very easonable terms.
We shall be pleased to make estimates as to cost of engravings on receipt of photographs, sketches, or copies of patents. After publication, the ats become the property of the person ording Aem, and will be fcan of value for circulars and for publication in other papers.

## new agricultoral inventions.

## mproved hay elevator.

Eugene L. Church, Walworth, Wis.-This is a hay elevator and carrie of simple and effective construction; and it consists essentially of a travel ing carriage locking, by a tilting catch, on a fixed stop block of the track, from which it is released by the action of the bail of the sheave frame of the hay fork on a pivoted grappling hook, the sheave being held in susand of the tilting catch. A track beam, which is suspended from the raft ers of a barn or other building by means of eyebolts passing throug the center of the track beam. A carriage runs along the track beam by pair of flanged wheels, at each end of which the wheels of one pair are set
at such distance from each other that they clear readily the suspension at such distance from each other that they clear readily the suspension
bolts as they pass along the same. A hoisting rope is attached, in the cus bolts as they pass along the same. A hoisting rope is attached, in the cus-
tomary manner, to a fixed point at one end of carriage, and passed then tomary manner, to a fixed point at one end of carriage, and passed then
through the sheave frame of the hay fork, and over a pulley of the carriage, through the sheave frame of the hay fork, and over a pulley of the carriage,
and through a sheave at the end of track beam, and down to the ground, where a horse is hitched to its free end.

IMPROVED CORN HARVESTER.
Bennett Osgood, Lenox, Iowa:-This invention is an improved machine for cutting up the corn, removing the ears from the stalks, and cutting the stalks into pieces, and which may be adjusted to cut up the corn and shock the husks of the ears; and the bars, in connection with rollers, break the ears from the stalks. The ears, when broken off, drop through an opening in the platiorm into an elevator, ap which they are carried, and are discharged into a wagon drawn at the side of the machine. The box of the elevator is supported from the frame of the machine, and its carrier is driven from a shaft by an endless band. The stalks are carried back by endless chains, and allowed todrop from the rear end of the platform upon he brackets attached to the rear bar of the frame. As they fall upon the brackets they are cut into three pieces by two knives, which work in slot in the brackets, and to the upper part of which are pivoted the upper ends upon the shaft, which revolves in bearings attached to the rear bar of the upon th
frame.

## IMPROVED SULEY HARROW.

George M. Furman, Laclede, Mo.-This is an improved riding harrow, so constructed that it may be readily raised from the round, by the drive place to place, to cut up the ground and cover the seed thoroughly, and be used for cultivating small grain and plants.

IMPROVED HARROW.
Hans Iver Lund, Charlotte, Iowa.-The object of this invention is to urnish an iron harrow which shall be light, strong, and durable, of less and effective in opary harrow, of less size, inexpensive in manufacture, up the soil evenly. The harrow is designed to be made in three sections, ll exactly alike, one, two, or three of which may be used at a time.
mPROVED COMBINED COTTON SCRAPER AND CULTIVATOR. Malachiah Roby, Kosciusko, Miss.-This machine is so constracted as vention relates to the construction and arrangement of a center or main beam, to the forward end of which the draft is attached. To the beam, a little in the rear of its forward end, is attached the middle part of a crosebar, in which are formed a number of holes to receive the hooks or clevises
by which the forward ends of side beams are secured to said crossbar. To the rear end of the main beam is attached the middle part of a crosbbar, to which the rear ends of the side beams are secured by a bow and yoke passed around them diagonally, and which are tightened, when adjusted

