primeval matter bestowed at the same time a power of development by change, arranging that the interaction of energy and matter, which make up environment should, from time to time, burst in upon the current of life and sweep it onward and upward to ever higher and better manifestations. Moments of great catastrophe, thus translated into the language of life, become moments of creation, when out of plastic organisms something newer and nobler is called into being."

doplex education.

The age in which we live is a fast one, and he who does not move with equal celerity, and keep pace with those around him, is ruthlessly thrust to the wall, and remains there unless he has strength and will to regain the lost position. We call to our aid every force of Nature and invoke the assistance of every appliance with which we are cognizant. We call our fathers slow, and to us they were so; but there was the same need of celerity in their every-day life as to-day there is in ours.
While calling to our aid the elements of Nature and adapting thousands of mechanical appliances to our wants, do we not often feel that there is beyond all these a "something" that may be invoked and trained to help us on in the race of life? Occasionally we find dim glimmerings of this " something" that we believe will eventually grow to be one of the prominent sciences. Physiologists tell us that the human brain is double, that the right and left lobes act in a degree independent of each other-the right lobe of the brain controlling the physiology of the left side of the individual from head to heel, while the left lobe exercises a like dominion on the opposite side. Grant this to be true, then can be explained the idiosyncrasy that is occasionally seen in individuals, of which we may instance that of writing at the same time with both hands; and again we have heard of telegraph operators sending and receiving two messages at the same time, operating with both hands and independent of each other. It is said that Nasmyth, the inventor of the steam hammer, could actually produce two sketches or drawings in this way and at the same time. It is also affirmed that Sir Charles Fox, the architect of the Exhibition building of 1851, could write upon two ideas at the same time and transfer these ideas simultaneously to paper with right and left hand. The mechanic can often be found who can operate upon one piece of mechanism, while at the same time his brain is busy upon the study of some unborn idea, foreign to that work upon which he is laboring. Writers can be found who can write out one train of ideas, while ideas entirely different are being cogitated upon somewhere in their craniums. have even heard it affirmed that an indistinct glimmering of a third idea would occasionally peep around the corner of the caputs of these favored ones.
Why not educate this? Why not forin schools and institutions to bring it out and lead the brain to perform this double function? It can certainly be done. The world wants it, surely. The age demands it. Individuals need it. If these individuals can succeed and become experts in this method of double work, will not double This, certainly, will be an incentive to its acquirement. Go to the apprentice when first he takes position beside the vise, with chipping chisel in one hand and hammer in the other. Theinjunction he mentally receives as he raises the hammer 1s, that to miss the chisel is to hit his knuckles. After a few demonstrative blows he knows what it means, and therefore chisel and hammer soon come by some strange process to harmonize in action, so that in whatever position the head of the chisel may be, the blow is sure to be properly received, and that, too, without any sensible effort on his part. In this illustration both right and left hand are taught to act, by brain dictation, in a certain concerted manner
Again, we find that mutes have been learned to articulate words and sentences by proper education, they being taught to imitate the motions of the mouth and labial organs as by their tutors directed. Education can do much, and these are some of its results. Can we not by proper teaching produce all the results as shown in the case of Nasmyth and Fox. The first lessons must necessarily be simple. For instance, two things done at the same time with both hands, giving expression at this time to ideas connected therewith, but distinct from each other. From this simple lesson we progress, and, as the ultimatum, we may arrive at greater achievements
than Nasmyth or Fox ever dreamed of. We may find that than Nasmyth or Fox ever dreamed of. We may find that
we can so divide our entity that we can be conscious of a double-brain existence in a dual action.

THE CARRIGEEN CROP.

To the great majority of people, Carrigeen, under the more familiar name of Irish Moss, is known chiefly as the basis of a pleasant and wholesome drink for the sick room, or as an
article of use in the preparation of delicacies for the table. Comparatively few are aware of its wide and varied use in the arts, or that the thousands of barrels of it employed annually by our manufacturers of paper, cloth, felt, and straw hats, etc., and by brewers, is not an Irish, but an American product, and, speaking strictly, is not a moss but a seaweed.
Carrigeen (chondrus crispus) is to be found more or less abundantly all along our northern coast, ranging between the low water line and the depth of forty feet, or so; but as a rule its fronds, which correspond to the leaves of air plants, are so numerously inhabited by small mollusca that they are
limited almost wholly to certain ledges in the neighborhood
of Scituate, Mass.-a section of coast guarded by the celeof Scituate, Mass-a section of coast guarded by the cele-
brated Minot Ledge Lighthouse, and famous for its danger to shipping. Here, where the waves of the Atlantic dash with full force upon the rocky coast, the carrigeen grows to perfection; and wherever it escapes the spawn of mussels and other shellfish, is gathered during the summer season in vast quantities.
The harv
The harvest begins in May and ends about the first of September. The gathering is made in two ways-by hand-picking during exceptionally low tides, and by means of longhandled iron-toothed rakes at ordinary tides. Of course the work cannot be carried on except during fair weather. Handpulling is possible only during the bi-monthly periods of spring tides, that is, when the moon is full and again at new moon. At such times high tide occurs about midday and midnight, and the ledges are exposed for moss gathering morning and evening. The mossers' boats are rowed to the rocks where the finest grades abound, and the gatherers select with great care the growths that are freest from minute shells and other foreign matter. This portion of the crop, if properly handled afterwards, generally goes to the apothecary and fe

on grade.

As the tide rises the pickers are driven to their boats, and proceed to the outer moss-bearing rocks where the rake is used, as it also is during ordinary low tides. Moss taken in this way is not so clean as the hand-picked, and is always
mixed with tape grass, which must be removed during the process of curing and packing.
The curing of the moss is the most critical part of this peculiar farming. On being brought to the shore the moss is black and unsightly; it must be bleached as well as dried. The bleaching is effected by repeated wetting and drying in the sun; and as the moss is readily soluble in fresh water the bleaching beds are situated near the banks of the salt creeks that abound along the shore. After drying, the moss is packed in tubs and rolled to the water, where it is thoroughly washed, then rolled back to the bleaching bed, to be dried again in the sun. Five or six such exposures are usually sufficient. On the bleaching ground, the moss is carefully spread and turned, and watchfully guarded against wetting by rain. In this process it turns from black to red, then to the yellowish-white of the perfected article. When properly cured the moss is stored in bulk, in shanties; where, as time permits, it is picked over and packed in barrels. The crop averages about half a million pounds a year; and thanks to the brighter and more abundant sunshine of our coast, the Irish product.

CATABTROPHEBM IN GEOLOGY.

Mr. Clarence King was probably not a little surprised to learn from the Tribune that in his most suggestive address
on "Catastrophism and the Evolution of Environment," he had turned the guns of Geology upon Biology; and that in calling attention to the influence of periods of accelerated change in environment upon exposed types of life he had swept away the "fundamental doctrines upon which has been built the scheme of development by natural selection and the survival of the fittest." Certainly nothing in the address betrays any consciousness of possible effects of that sort. And it is quite probable also that Mr. King will have to suffer some annoyance from seeing his name set up at gaze, like Joshua's moon in Ajalon, by the unscientific press generally, as that of the newest champion of orthodoxy against the leaders of modern scientific thought: a penalty which scientific
Mr. King cert
Mr. King certainly deals some telling blows against the position of the stricter school of Uniformitarians in geology, and brings into prominence a much neglected element in the struggle for existence; but there is no scientific revolution threatened, nor are any crumbs of comfort spread for those endeavoring to arrest the natural drift of scientific progress. The issue between Mr. King and the sticklers for uniformity in rates of geological change is simply this: In the reaction against the sweeping cataclysms, the sudden wipings out of whole creations and the sudden introductions of new
worlds of life believed in by earlier geologists, the modern English school Las come to look upon time and the slower modifications of the carth's surface, now observable, with the struggle for existence under easy conditions, as the chief factors in geological change and its accompanying va riations in the forms of life. Mr. King, on the other hand, insists that in so doing they have taken too little account of catastrophic changes, that is, widespread and sudden movements of sea and land. In other words, he raises rapid
change of environment from the subordinate place it has hitherto occupied in the scheme of historical development, and gives special emphasis to the grand geologic movements which have to do with such changes.
In this Mr. King has unquestionably rendered good service to the science he has done so much to extend and honor in the field; while the illustrations from American geology which he brings to bear on the subject are as likely as his sturdy opinions to attract attention. Yet we are inclined to think that in some things he has allowed his enthusiasm to run away with him. The stolid self-confidence of extreme
Uniformitarians has tempted him to exaggerate the periodic accelerations of geologic and biologic movement, and to verstate their effecto quite as much as others have under estimated them; and when he charges the followers of Lyell
with intellectual near-sightedness and a lack of "the very mechanism of imagination," they may possibly be able to retort not unjustifiably that he has mistaken the natural foreshortening of the geological vista due to distance for actual brevity; and that his belief in the abruptness and suddenness of the great changes which the earth's strata record, may be due to his own lack of sustained imaginative power for brasping and interpreting all the evidences of the enormous grasping and interpreting all the evidences of the enormous
time really involved. But this is a question not of imaginative capacity but of logical deduction from observed facts; and however abrupt the beginning of some of the great geo logic movements may have been, their subsequent progress cannot in all cases have been so rapid as to allow of their being called catastrophic in any ordinary acceptation of the term. Take, for example, the alleged catastrophe which marked the close of the mesozoic age in the West. Of this movement Mr. King remarks: "In a quasi-uniformitarian way, 20,000 or 30,000 feet of sediment had accumulated in the Paciffc and 14,000 in the [American] mediterranean sea; when these regions, which, during the reception of sediment, had been areas of subsidence, suddenly upheaved, the doming up of the middle of the continent quite obliterating the mediterranean sea and uniting the two land masses into one. The catastrophe which removed this sea resulted in the folding up of mountain ranges 20,000 and 40,000 feet in height, up of mountain ranges 20,000 and 40,000 feet in height, thereby
That this great change occurred, and was attended with an obliteration of the wonderful reptilian and avian fauna of the mesozoic age, is most true: that it occurred suddenly does not appear. On the contrary, there is evidence to show that the prodigious folding up of mountain ranges involved could not have proceeded with sufficient rapidity to turn the course of a stream of water. It happened that one of those olds-one which, had no denudation been going on meanwhile, would have lifted its crest higher than the highest peak of the Himalayas-lay directly across the course of the Colorado river. The river held its course uninterruptedly, sawing its way through the uplift until six vertical miles of rocky strata had risen past it. At no time, therefore, could the rapidity of motion in the bulging strata have exceeded the capacity of the river to wear away the obstruction, and the bulge was fifty miles across! We do not know how rapdly a river may sink its channel through such a rising barrier; but we do know that a process of that nature cannot legitimately be described as swift or sudden. And surely it requires not less intellectual far-sightedness and imaginative
faculty to carry the mind across the enormous stretch of faculty to carry the mind across the enormous stretch of during tain fold was worn down by rain and atmospheric abrasion -as to mass the continental doming, the mountain folding, -as to mass the continental doming, the mountain folding, astrophe."
Mr. King, however, is not a Catastrophist of a very violent sort. He shelves among the errors of the past the belief in such cataclysms as Cuvier believed in, involving world-wide destruction of all life-"the mere survival of a prehistoric terror, backed up by breaks in the palæontological record and protected within those safe cities of refuge, the Cosmogonies;" though he rejects as equally unsatisfactory the mild affrmaions of the Uniformitarians, that existing rates of change and indefinite time are enough to account for all the geological record. With our present light, he holds, geological hisory seems to be a dovetailing together of the two ideas. "The ages have had their periods of geological serenity, when change progressed in the still, unnoticeable way, and life through vast lapses of time followed the stately flow of years; drifting on by insensible gradations through higher and higher forms, and then all at once a part of the earth suffered short, sharp, destructive revolution unheralded as an earthquake or volcanic eruptions." Thus stated, his position does not seem to be radically different from that of the broader Uniformitarians, except that he marks the periods of accelerated physical change, and not those of comparative quiescence, as the dominant ones in their influence on lifechange. He takes high and strong ground, too, in insisting that it is the business of geology not simply to decipher and map out the changes which have taken place in the configuration of the globe and in its climatic conditions, but also to investigate and fix the rates of change. And when the evolution of environment takes form as a distinct branch of geology, he expects to witness a marked modification in the dominant views of biologists. Its few broad laws will include " neither the absolute uniformitarianism of Lyell and Hutton, Darwin and Haeckel, nor the universal catastrohism of Cuvier and the majority of teleogists." "Huxley alone among prominent evolutionists opens the door for a union of the residue of truth in the two schools, fusing them in his proposed evolutional geology."
So, on looking back over a trail of thirty thousand miles of geological travel, Mr. King is impelled to say that Mr. Husey's far-sighted view perfectly satisfies his interpretation of the broad facts of the American continent.
Of Mr. King's observations in regard to plasticity of physical structure in connection with rapidly changing environment and the struggle for existence, we propose to speak at another time.

The great stone monuments of England, like Stonehenge, are supposed, by Mr. James Fergusson, to be military troflelds by the victorious armies.

