Srimtific Gmeriram.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors
poblished weekly at
NO. 37 PARK ROW, NEW YORK

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One cops, one year, postage included....
One copp, ilx months, postaxe included
Clubs.-One extra copy of THE SCIENTIFICC AMRRICAN will be eupplied
ratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.

The Scientific American Supplement is a distinct paper from theScIENTIFIC AMERICAN. THE SUPPLEMENT
is issued weekly; every number contains 16 octavo pages, with handsome is issued weekly; every number contains 16 octavo pages, with handsome
cover. uniform in size with ScIENTIFIC AMERICAN. Terms of subscription cover. uniform in size with Scientific AMERICAN. Terms of subscription 10 cents. Sold by all news dealers throughout the country wombined Rates. - The Scientific American and Supplement papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal order, or registered letter.
A.ddress MUNN \& CO., 37 Park Row, N. Y.
P.

Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the
time for which they have prepaid. Before the time indicated expires, to insure a continuity of numbers, subscribers should remit for another year For the convenience of the mail clerks, they will please also state whe Neir subscriptions expire.
New subscriptions will be entered from the time the order is received;
but the eback numbers of either the ScIENTIFIC AMERICAN or the SIIENTIFIC AMERICAN SUPPL EMENT Will be sent from January when desired in his case, the subscription will date from the commencement of
volume, and the latter will be complete for preservation or binding.

VOL. XXXVII., No. 19. [New Series.] Thirty-second Year. NEW YORK, SATURDAY, NOVEMBER $10,1877$.

TABLE OF CONTENTS OF
 THE SCIENTIFIC AMERICAN SUPPLEMENT NO. 97;

 For the Week ending November 10, 187\%.I. ENGINEERING AND MECHANICS.-Olmstead's Railroad Track
Sweeper. 1.engraving.-New Narrow Gauge Locomotive for Festiniog Sweeper. 1.engraving.-New Narrow Gage Locomotive for F
Railway. 1 engraving.-The Eddy Locomotive. 1 engraving.
On Water Ballast. On Water Ballast. By Benjamin Martel. Read before Institute
of Naval Architects. Complete description of Construction of Double of Naval Architects. Complete description of Construction of Double
Bottoms for carrying Water Ballast. with 20 engravings.-The Sutro Tunnel., -Rock-boring Machinerys-Liverpool Engineering Society.
On Launching the Ironclads Kaiser, Deutschland, and other large ships. By D. A. Samuda, Institute of Naval Architects. Slip, inclina-
tion and wass. Bilige Logs and Launch. Skoring up Inside the Ship.
Hydraulic Ram for Starting, etc. 6 engravings. Hydraulic Ram for Starting, etc. 6 engravings. New Bridge over the Medway. Sir J. Bazalgette, Engineer. Founda-
tions, Coffer Dams, Cent ${ }^{\text {rss, }}$, Parapet, Cornice, Piers, Arches, etc. 5 en Lions, Coffer Dams, Cent rss, Parapet, Cornice, Piers, Arches, etc. 5 en
gravings. -The Tay Bridge.-The Manawatu Gorge Bridge, New Zea-
land. 2 engravings.-Cast Steel Guns. By M. GAUTIER, C.E.-EElasland. 2 engravings.-Cast Steel Guns. By M. GAUTIER, C.E.-Elas-
ticity of Metals at Different Temperatures. By G. Pisati.-Glass Impervious to Gas. The Granulation of Wheat. By Oscar Oexle, C.E.
School of Fine Arts, Marseilles. 1 engraving -Anecdote of Sir Isaad Newton.-Relations of Labor to Education. By JAMES JoHONNOT.
1I. TECRNOLOGY.-Self-acting Print Washing Machine. By W.A. Nich-
olas. 1 engraving.-Simultaneous Exposure and Development. By olas. 1 engraving
ERNEST Bolvin.
III. MEDICINE AND HYGIENE.-The Range of the Homooopathic Law In the Practice of Medicine. By W. B. A. .
Miscular Action.-Salt in the Animal Economy
IV. NATURAL HISTORY, BIOLOGY, ETC.-The Phenomena of Human
Life. A recentaddress by Hrofessor Join TyND and interesting paper, to which the laws of energy and the continuity of motion as they are found in the material universe are pointed out and their existence traced in the animal economy and the human sys-
tem. The operation of the Will, and the relations between the human mind and body are discussed in the clearest manner, from the stand point of the man of science.

V.-AGRICULTURE.-Cultivation of Peanuts.

VI. CHESS RECORD,-Biographical Sketch of J. H. Finlinson, Hudders feld, England, with Portrait and two of his Problems. Problem by
S. LorD - Game between J. H. FINsinson and T. S. Lord.-Game between J. H. Finlinson and T. Bailex, with
notes.-West Yorkishire Chess Association.- Notice to Correspondents. -Solutions to Problems.

arrested development.

The interest excited by Von Chauvin's recent observathe actual novelty or importance of their results. excess of lotl is not the only creature whose development has been rapidly carried forward from a stage, permanently low in the natural state, to another and higher one, in consequence
of human interference. Nor, as we noticed the other day, were that lady's specimens of the axolotl the first to under go, under observation, the, to them, abnormal transfor mation into fully developed amblystoma. Besides, we are strongly inclined to suspect that, so far from determining or
compelling the evolution of the two which survived he treatment the German lady's attention to her pets was the reverse of helpful. Had they been let alone, it is quite possible that the fatalities would have been fewer and the pro gressive development of the survivors not less remarkable.
For the benefit of those unfamiliar with the creatures in question, we will note here that the transformation alluded to corresponds to that of the water-breathing tadpole into the land inhabiting and air-breathing frog. Seventy years ago Cuvier suggested that all siredons (like the axolotl) might in reality be larval salamanders, that is, the tadpole stage of higher batrachians. The observations of Dumèril upon numerous specimens of axolotl, bred in the Natural Historical Museum at Paris, proved the old suspicion to be habitat-the Lake of Mexico, and neighboring mountain habitat-the Lake of Mexico, and neighboring mountain
lakes-the axolotl is, so far as known, always an inhabitant of the water. The specimens transported to Paris remained unchanged; but some of their offspring passed on to a higher stage of development, developing lungs in place of branchia, and becoming perfect amblystoma, hithherto re-
garded as belonging to a distinct family. Why all did not complete the same course of development was a mystery to Dumèril (whose observations were published in Comptes Rendus, 1865 and 1867); but a possible explanation was sug gested by observations made soon after by Professor Marsh and other American students, upon several allied species of siredons from the elevated lakes of the Far West. Professor Marsh's observations were published in the American Jour nul of Sci nce for November, 1868.
That distinguished observer had seen Professor Dumèril's
account of the remarkable metamorphosis of the second account of the remarkable metamorphosis of the second generation of the axolotl (siredon Mericantes) in Paris; and, during his next summer's excursion to the Rocky Mountains, took pains to secure a number of specimens of siredon lichenoides, Baird, from Lake Como, Wyoming Territory, At the same time a number were secured by Professor Eus-
tis, of Harvard. The two lots were brought to New York tis, of Harvard. The two lots were brought to. New York
together and here divided, part going to New Haven with together and here divided, part going to New Haven with
Professor Marsh, the rest to Cambridge, to be observed by Professors Wyman and Eustis. Professor Marsh's specimens made the passage to New Haven without apparent in convenience, either from the long journey or their transference to fresh water, the water of Lake Como being brackish They fed readily upon worms and insects, and occasionally came to the surface and inhaled air. More rarely an exha
lation occurred, usually under water. On being removed from their native element they showed the same distress as fishe under similar circumstances, although in a much less degree.

The first indications of any change were observed in one of the smaller specimens; and the metamorphosis apparently began during the journey, which lasted about a week. The animal first became spotted and of a darker hue. Then the broad thin membrane along the back, and above and below the tail, was gradually absorbed; the external branchia followed more slowly; the dark spots increased in number; and the animal came more frequently to the surface for air. By the time the swimming and water-breathing appendages were absorbed, and the openings on the neck closed up, the head had undergone marked changes in shape; the eyes had become more convex and prominent; the body had largely decreased in bulk; the thin external skin was shed, and the secretion of mucus from the surface sensibly dimin:shed. At the same time the animal showed an increasing desire to leave the water, often remaining for some time with its nostrils above the surface, and occasionally made violent struggles to escape. Aided by a heavy rain at night it at last succeeded, and thus put an end to further observation, just at a time when it had lost the
siredon and become a true amblystome. A few days later, several other specimens of various size began to show signs of transformation. Two were placed in a glass jar, and left in a strong light, and five others were
left in a cooler place in the shade. At the end of three weeks the first two had completed the metamorphosis. The others changed less rapidly, or not at all, three completing the metamorphosis in about six weeks, while two showed little or no change, remaining typical siredons. In those that were transformed, a succession of warm days hastened the process remarkably, while it.was all but arrested by a series. of cooler days. Of the specific changes which the specimens underwent in structure, dentition, habits, etc. in passing from the siredon to the amblystoma state, full in formation may be found in Professor Marsh's paper.

At the thme bis specimens were under observation, the specimes taken to Cambridge were being studied by Professors Wyman and Eustis. Only one of the latter was transformed, and change occured much less speedily than those in New Haven. Two, kept by Professor Eustis, es caped during à rain storm, and six days aftemionae was found |
still alive, though shrivelled up and the branchia partially gone. On being placed in water, it refused food and died. The lateness of the season probably prevented the transfor mation of the others.
In the next number of the American Journal of Science, Professor Silliman contributed a note describing a colony of amblystom in the possession of a person at Cheyenne. The proprietor assured him that when they were received from Lake Como, a few weeks before, they were all in the "fish" state; that they began to change soon after, and in about three weeks were all completely developed into salamanders. That this change ever occurs in Lake Como, there is, so far as we are aware, no evidence. In this connection, Professor Marsh remarks that, in the elevated region where Lake Como is situated (7,000 feet above the sea), although the weather in summer is quite warm, the nights are always cool, and the changes of temperature often sudden and very great; hence the metamorphosis, if it began, would probably pro ceed slowly and be liable to suspension during its various tages. That the animal breeds in the siredon state, like the axolotl, he is quite ready to believe; and he remarks that it is probable that after reproduction the power of complet development would be lost. Here is, perhaps, the explana ion of the persistence in the siredon state of the majority of the specimens of axolotl observed by Dumèril and Von Chauvin.
A legitimate inference from all the facts would seem to be that the siredons of the elevated lakes of Mexico and the United States are amblystoma, whose complete development as been arrested by increasing elevation and consequen climatic change, at a period relatively so recent that they have not.entirely lost their ancestral capacity for becoming fully developed under favorable conditions. The transfer rence of reproduction to the larval state is not an insuper able objection to this inference, since, as Professor Marsh observes, the near approximation in many batrachians of the periods of reproduction and metamorphosis, and the effects (especially upon the latter) of even slight differences of physical conditions, are known to produce remarkable varia tions in the same species, as well as other results, until re ently quite unexpected.
It is well known, for example, that our common large bullfrog (ran pipens) may remain in the larval or tadpole state, in the colder parts of New England, for many time the normal period; and Professor Wyman once kept the transformation of such tadpoles under arrest for a number of years, the experiment being thwarted at last by an accident, which emptied his tank and killed his specimens. This line of investigation is worth the attention of some of our younger naturalists. It is quite possible that, by a skill ul use of light and temperature, the tadpole stage in the bullfrog may be continued until after the reproductive fac ulty has been developed, and the natural history of siredons paralleled by art.

PROFESSOR TYNDALL ON THE PHENOMENA OF HOMAN LIFE.

Professor Tyndall has recently delivered before the Mid land Institute at Birmingham, England, one of those charac teristic addresses of his which seems to us likely to excite discussion as widespread as that aroused by his famous prayer gauge proposal and the great Belfast speech. The idea that there is no necessity for invoking the supernatural to account for the ordinary phenomena of human life lias already been repeatedly foreshadowed in Professor Tyndall' writings. Nor $\mathrm{h}: \mathrm{s}$ he been at all alone in that view, as it is virtually the same as is held by the majority of scientific easoners of the present time. But in this late address, which, owing to its length, we cannot publish in these col mns, and therefore refer the readers to the pages of the Scientific American Supplement, current issue, where it is printed in full) he crystallizes, so to speak, that opinion and the arguments on which it rests into a compact mass of logical reasoning. With all that clearness, precision, and beauty of language which have rendered him almost without peer as a public lecturer, he places before us a chain of argument, or rather causes his hearers to forge the links themselves, he only acting as guide, and thus enables them to reach for themselves a logical conclusion.
Just as in the opening of a musical work, a suggestion is iven of the themes afterwards to be wrought out, so in his introductory sentences, by which the audience is placed in good humor with themselves and the lecturer, Professor Tyndall manages to shadow forth an instance of absence of free will. Half humorously he deplores the hard fate of modern scientific men, who like himself are drawn from their quiet laboratories and forced into publicity which is not con ducive to the exercise of their best powers. Unlike Joule and Darwin, who are not dragged from their seclusion and made presidents of associations, he himself is a special suf ferer, but social duties are paramount to his will. With thi much preamble he launches into a splendid account of that reat theory of modern science, the doctrine of the conserva tion of energy. "There is nothing gratuitous in physical nature," he says, "no expenditure without equivalent gain, no gain without equivalent expenditure. With inexorable constancy the one accompanies the other, leaving no nook or crevice between them for spontaneity to mingle with the pure and necessary play of natural force. Has this uniform ity of nature ever been broken? The reply is, 'Not to the knowledge of natural science.'" Then follows a wealth of illustration to show the universal application of the great law, and through this, step by step, the hearer is led to the
question of the energy of the human machine. Joule's state- any of the railway company's operations in the slightest dement is quoted, that unless we abandon the physiological axiom that "the animal body cannot create heat out of noth ing, we are driven to the conclusion that it is the total heat within and without that ought to be regarded as the real calorific effect of the oxidation within the body." A man calorific effect of the oxidation within the body. A man
weighing 150 pounds consumes, we are told, in lifting his weighing 150 pounds consumes, we are told, in lifting his
own body to a height of 8 feet, the heat of a grain of carbon. own body to a height of 8 feet, the heat of a grain of carbon.
Jumping from this height, the heat is restored. The mus. cles of a laborer whose weight is 150 pounds weigh 64 pounds. When dried they are reduced to 15 pounds. Were the oxidation corresponding to a day laborer's ordinary work
exerted on the muscles alone, they would be wholly conexerted on the muscles alone, they would be wholly conenables the production of bodily motions, and to enquire whether it is the action of the will. The answer is that the will is mediate, not direct. The nerves controlled by the will is mediate, not direct. The nerves controlled by the
brain pull, as it were, the trigger, but the gunpowder which brain pull, as it were, the trigger, but the gunpowder which
they ignite is stored up in the muscles. "We all know the they ignite is stored up in the muscles. effect produced on a nervous organization by a slight sound which causes affright. An aerial wave, the energy of which would not reach the minute fraction of that necessary to raise the thousandth of a grain through the thousandth of an inch, can throw the whole human frame into powerful mechanical spasm, followed by violent respiration and palpita tion."
Thus far-and we have given but the barest outline of the argument-nothing has been advanced which rises to any other level than that of plain scientific truths which no one can hesitate to accept. But now comes the question: What causes the nerves to act and liberate this gigantic power? Who or what is it that sends and receives massages through the bodily organism? The query is answered thus: " You pic ture the muscles as hearkening to the commands sent through the motor nerves; you picture the sensor nerves as the vehicles of incoming intelligence; are you not bound to supplement this mechanism by the assumption of an entity which uses it? Are you not forced by your own exposition intc the hypothesis of a free human soul?" Henceforward the whole drift of the address changes-persuasion and abstract argument replace scientific deduction; but the speaker has proved us necessitarians by necessity, and then, lest the dilemma affict us, goes on to show that the belief is by no means such a dreadful one.
Are the brain, and the moral and intellectual processes known to be associated with the brain, subject to the laws we find paramount in physical nature? This is the final proband we have been prepared for the affirmative response. The phenomena of heredity, of how much we owe to the transmitted influences of the past, how closely we are bound up in a chain of events-evolution, whence we cannot escapesll are adduced to prove that we are not masters of the circumstances in which our motives and wishes originate, and " if finally our motives and wishes determine our actions, in what sense can these actions be said to be the result of free will". "There is," says Professor Tyndall, in his closing sentences, "on all hands a growing repugnance to invoke the supernaturail in accounting for the phenomena of human life; and thoughtful minds, finding no trace of evidence in favor of any other origin, are driven to seek in the interaction of social forces the genesis and development of man's moral nature. If they succeed in the search-and I think they are sure to succeed-social duty would be raised
to a higher level of significance, and the deepening sense of to a higher level of significance, and the deepening sense of
social duty would, it is to be hoped, lessen, if not obliterate, the strife and heart burnings which now beset and disguise our social life.

the american railway system.-maintenance of

 WAY.In presenting some facts illustrative of the progress in railway management in this country, we take data from the Pennsylvania Company, that great organization, by virtue not only of the unparalleled extent of its lines, but by the rare administrative ability by which they are controlled, pre eminently deserving to take first rank as an example. In no other similar organization are the principles of engineering, construction, maintenance, and management carried to
higher standards, and we doubt if any other road can show higher standards, and we doubt if any other road can show so thorough a system in all its departments. In each of these, for example, certain standards are decided upon as and governing law, whether it bea mechanical measurement or a matter of policy, and subordinates are rigidly held thereto, no departure being permitted. A somervat amusing illustration of this occurred recently, when a friend, traeling on their line on a pass issued to him as the company's guest, because of an informality therein, and having insufficient funds to buy a ticket, had presented to him by the conductor the alternative of getting off the train or depositing his watch as security. Being a sensible man he appreciated the situation, surrendered his time-piece, and continued his journey, receiving his property back in due time with a po lite explanation from the company's office. The conductor had no discretion in the matter, and courteously maintained the regulation for such case made and provided. This in flexibility might appear to defeat progress in certain departments, but to prevent this tendency, the company maintains a corps for the express purpose of conducting experiment, and any practical improvement reported by it, is put to the working test, and, if demonstrated to have real value, is adopted, but is not, prior to its adoption, allowed to affect

any of gree.

A recent article furnished some interesting facts relative to the running of their trains under the block system, and it is proposed herein to explain the method by which their magnificent roadway is maintained in such superior condition. To begin with the: official organization of the company is such as to secure with a proper distribution of labor and responsibility the greatest possible efficiency.
The entire line is divided into three grand divisions, severally known as the New Jersey, the Pennsylvania, and the Philadelphia and Erie. Over the whole there presides, inde pendent of the Board of Direction, one general manager and two engineers, one of the latter having charge of bridge and buildings, the other of maintenance of way. Each division is under a general superintendent, and being divided into sections of about 100 miles each, called sub-divisions, for each of which there is a division superintendent. These subdivisions are again divided, say into three parts, over each of which is a supervisor. Under him are sub-division foremen, having $\cdot 2 \frac{1}{2}$ miles of track each to work and keep in order. The number of men allowed to these foremen is determined by the peculiarities of the locality, more men be ing necessary for difficult sections, as in the mountain regions or wherever the trackway is exposed, to exceptional danger.
The important relation of the condition of a road way to its carrying capacity, and the economical management of the traffic over it, was so evident that it was deter mined to develop the highest possible standard of excellence in this department. The various engineers, superintendents supervisors, and other practical men, met in consultation to decide what various items were essential to the production of a perfect road. Suggestions were made and discussed fully, after which short sections were ordered, constructed according to the plans agreed on, and when ready these were inspected and criticised by the same officers, some modifications suggested, and still further improvements developed. This sample track was as nearly ideal in every veloped. This sample track was as nearly ideal in every
particular as it could be made, as to solidity, evenness, drainage, joints, ties, etc., while the surface was finished with all the care and accuracy of that of a drive in Central Park.
When completed to the satisfaction of all, the sub-division
foremen and others were referred to it as the standard, and notified that it was expected that the entire line would be brought to a like condition. To encourage a healthful emulation among the subordinates, it was suggested (by Mr. Cassatt, Vice-President) that premiums should be offered for excellence of trackway, namely, $\$ 100$ to the supervisor whose section should rank highest, and $\$ 50$ to each foreman whose piece should approach most nearly to the standard. The method employed to determine these awards is both thorough and impartial. About the first of November the various engineers, superintendents, and others go over the entire line in a special car from east to west at a speed of forty-five miles an hour, to test severely the riding qualities of the road. Then the party make the return trip at ten miles an hour in a gondola car, as it is called, which is plared in front of the engine and has seats arranged in tiers, so that all have an unobstructed view of the track. Each person is provided with a printed table, the horizontal rul ings of which represent the different $2 \frac{1}{2}$ mile sections, with the names of their respective foremen at the left side and the perpendicular rulings representing the different items,
specified by name, which are to be specified by name, which are to be examined and criticised. Under these latter rulings each inspector enters a number from 1 to 10 to express his estimate of the quality of each part of the work; 10 is the symbol of perfection, and is reached; in fact 8 is rarely used.
The total of each foreman's number is extended to the right, and his average optained by dividing the sum by 11, that being the number of ratings on the table. Each mem ber of the inspecting party makes his own figures inde pendently, and they are subsequently aggregated and a grand average struck to determine which of the men are entitled to the prizes. It should be remarked, however, that as not all the eleven items that go to make upthe perfect roadway are of equal importance, discrimination is made in favor of the foreman whose track is in the highest mechanical condition in the essential points, these features very properly out weighing mere superficial appearance.
When the awards are made, printed announcement is given, and the effect has proved most healthful. The prize money is of course in itself very acceptable, but the pres tige is still more valued, as the man is putin the line of promotion, and his work attracts much attention from his fel lows, who are guided by its excellence in the next competi tion.
It is by this system that the Pennsylvania Railroad Comhorough pirst constructed its roadway upon the most tion but constantly improves it. No thoughtful traveler in passing over it can fall to be struck with its solidity and fine appearance, it being in fact a great macadamized way. If he is really observant he will see that its condition is an explanation of the safety and comfort of the great travel
over it. Those familiar with the freedom from dust, secured by the stone ballasting used on the entire line in Pennsylvania, will be pleased to learn that the road between New York and Philadelphia is to be finished in the same way, the wor now being in progress.

notes of patent office decisions.

In Gordon's case, just decided by the Acting Commissioner of Patents, the trade mark sought to be registered was described as a narrow strip of leaf tobacco placed as a wrapper around the mouth piece of a cigarette.
It was held by the Examiner of Trade Marks that the abo matter claimed, as a trade mark, was a functional part of the cigarette and was consumed with it; that, in fact, it ntered into the mechanical structure of the article itself, and therefore was not an arbitrary symbol or a lawful trade mark.
It will do, however, to carry this doctrine to the extreme of saying that nothing can be regarded as a proper trade mark which is so intimately connected with an article as to be consumed with it; for if that were the rule, a mark upon cake of soap, a symbol in the sole of a shoe, and many other forms of devices which might be mentioned, and hich are undoubtedly excellent trade marks, would lose heir character and value as such from the mere fact that he use or consumption of the article would also result in he destruction of the mark.
A distinction must be made in these cases, between the material, which is essential in the structure of the article, and unessential matter placed thereon or incorporated therein, for the mere purpose of distinguishing the origin or ownership of the article.
Thus the box, barrel, or wrapper containing merchandise, whatever its form, cannot, per se, be the trade mark; but a hame, symbol, figure, letter, form, or device, cut, stamped, east, impressed, or engraved thereon, or in some other man ner attached thereto, or connected with the article itself, may be a proper trade mark. The trade mark need not be inseparably connected with the package, as when blown into glass, but it must have the independent and sole quality of distinguishing the goods as being of a particular manufacture, or as belonging to a particular party. There could be, therefore, no legitimate objection to the trade mark sought to be registered by Gordon, on the mere ground that it was connected so intimately with the article to which it was attached as to necessitate its consumption with that of he article itself.
But there was a serious objection to the registration on the ground that it did not perform the sole office of a trade mark. No one has a right to appropriate to his own use, as a trade mark, a device which, from the nature of the use to which it is put, others may adopt and employ for the same purpose. Now, in this case, the leaf of tobacco which was wrapped around the mouthpiece or end of the cigarette, answered a practical, and, perhaps, a very useful purpose. Being composed of tobacco, it was an addition to the material of the cigarette, strengthened the wrapper, and was probably more greeable to the taste than the paper of a cigarette. The useful properties of the article, therefore, seemed to be the predominant ones, while the function the wrapper per ormed as a trade mark was merely incidental. Perhaps a trade mark would have been granted had Gordon applied merely for a silk band attached to the cigarette, or a colored piece of paper, or similar device connected therewith, since n such instance, the device would perform no mechanica unction, or answer any other purpose than that of a trade mark
The intent of the trade mark law being to afford protecion to symbols, and not to inventions or mechanical devices, he question whether Gordon had introduced an improve ment in the manufacture of cigarettes was immaterial. If he had introduced an improvement, and was entitled to pro ection thereon, it could be by a patent only. In the ab sence of any patent, other manufacturers of cigarettes could not be prevented from using the like useful device.
The Acting Commissioner of Patents, therefore, while verruling the decision of the Examiner of Trade Marks, that a trade mark, which is so intimately connected with an article as to be consumed with it, cannot be registered, yet firms the decision of the latter officer, that the strip of to bacco leaf served more a mechanical than a distinctive pur pose. He therefore denies it registration as a trade mark.

the wooden pavements of chicago

The Engineering Nexos severely criticises the present wooden pavements of Chicago, and declares they are a tanding disgrace to everybody concerned in them. That he foundation of the paved strcets is not only filled with earth hauled from adjacent excavations, but with all the rubbish, bricks, stones, manure, and kitchen slops that can be obtained in the neighborhood. Nothing is excluded from he fillings. The material is carelessly dumped, and ther is no sufficient puddling, ramming or rolling. The solidification of the accumulated mass is anything but uniform Upon this fourdation, so unfavorable to permanence, the pavement is laid. As a consequence it soon shows settle ment in places, and solidity is the general exception. There are some hundreds of miles of wood pavement in Chicago, but the News declares that there is scarcely a dozen miles fit to travel on, and this pavement has been laid only from three to five years. A Committee of the City Council have the subject in hand, and are earnestly seeking to improve he condition of things and determine what kind of pavement can be best adopted to replace these defective paved streets.
Tre publication of the illustrated article on "Graphic Phonetics." to which reference was made last week, has been unavoidably deferred. It will appear at an early day.

