Srimtific Gmeriram.

ESTABLISHED 1845.

MUNN \& CO., Editors and Proprietors
poblished weekly at
NO. 37 PARK ROW, NEW YORK

o. D. MUNN.

A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN.

One cops, one year, postage included....
One copp, ilx months, postaxe included
Clubs.-One extra copy of THE SCIENTIFICC AMRRICAN will be eupplied
ratis for every club of five subscribers at $\$ 3.20$ each; additional copies at same proportionate rate. Postage prepaid.

The Scientific American Supplement is a distinct paper from theScIENTIFIC AMERICAN. THE SUPPLEMENT
is issued weekly; every number contains 16 octavo pages, with handsome is issued weekly; every number contains 16 octavo pages, with handsome
cover. uniform in size with ScIENTIFIC AMERICAN. Terms of subscription cover. uniform in size with Scientific AMERICAN. Terms of subscription 10 cents. Sold by all news dealers throughout the country will be sent for one year, postage free, on receipt of seven dollars. Both papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal order, or registered letter.
A.ddress MUNN \& CO., 37 Park Row, N. Y.
P.

Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the
time for which they have prepaid. Before the time indicated expires, to insure a continuity of numbers, subscribers should remit for another year For the convenience of the mail clerks, they will please also state whe Neir subscriptions expire.
New subscriptions will be entered from the time the order is received;
but the eback numbers of either the ScIENTIFIC AMERICAN or the SIIENTIFIC AMERICAN SUPPL EMENT Will be sent from January when desired in his case, the subscription will date from the commencement of
volume, and the latter will be complete for preservation or binding.

VOL. XXXVII., No. 19. [New Series.] Thirty-second Year. NEW YORK, SATURDAY, NOVEMBER $10,1877$.

TABLE OF CONTENTS OF
 THE SCIENTIFIC AMERICAN SUPPLEMENT INO. 97 ;

 For the Week ending November 10, 187%I. ENGINEERING AND MECHANICS.-Ommstead's Railroad Track
Sweeper. 1.engraving.-New Narrow Gauge Locomotive for Festiniog Sweeper. 1.engraving.-New Narrow Gauge Locomotive for 1 .
Railinay. 1 engraving.-The Eddy Locomotive. 1 engravig.
On Water Ballast. Railway. 1 engraving.-The Eddy Locomotive. 1 engraving.
On Water Ballast. By BENJAMIN MARTEL. Read before Institute
of Naval Architects. Complete description of Construction of Naval Architects. Complete description of Construction of Double
Bottoms for carrying Water Ballast. with 20 engravings...The Sutro Tunnel., -Rock-boring Machinerys-Liverpool Engineering Society.
On Launching the Ironclads Kaiser, Deutschland, and other large ships. By D. A. Samuda, Institute of Naval Architects. Slip, Inclina ships. By D. A. Samuda, Institute of Naval Architects. Slip, inclina-
tion and ways. Bilge Logs and Launch. Skoring up Inside the Ship. Hydraulic Ram for Starting, etc. 6 engravings. New Bridge over the Medway. Sir J. Bazalgette, Engineer. Founda-
tions, Coffer Dams, Cent ${ }^{\text {rss, }}$, Parapet, Cornice, Piers, Arches, etc. 5 en Lions, Coffer Dams, Cent rss, Parapet, Cornice, Piers, Arches, etc. 5 en
gravings. -The Tay Bridge.-The Manawatu Gorge Bridge, New Zea-
land. 2 engravings.-Cast Steel Guns. By M. GAUTIER, C.E.-EElasland. 2 engravings.-Cast Steel Guns. By M. GAUTIER, C.E.-Elas-
ticity of Metals at Different Temperatures. By G. Pisati.-Glass Impervious to Gas. The Granulation of Wheat. By Oscar Oexle, C.E.
School of Fine Arts, Marseilles. 1 engraving -Anecdote of Sir Isaad Newton.-Relations of Labor to Education. By JAMES JoHONNOT.
1I. TECRNOLOGY.-Self-acting Print Washing Machine. By W.A. Nich-
olas. 1 engraving.-Simultaneous Exposure and Development. By olas. 1 engraving
ERNEST Bolvin.
III. MEDICINE AND HYGIENE.-The Range of the Homoonathic Law
in the Practice of Medicine. By W. B. A. Scort, M. D. - Heat in in the Practice of Medicine. By W. B. A. .
Miscular Action.-Salt in the Animal Economy
IV. NATURAL HISTORY, BIOLOGY, ETC.-The Phenomena of Human
Life. A recentaddress by Hrofessor Join TyND ALL. A most able and interesting paper, to which the laws of energy and the continuity of motion as they are found in the material universe are pointed out and their existence traced in the animal economy and the human sys-
tem. The operation of the Will, and the relations between the human mind and body are discussed in the clearest manner, from the stand point of the man of science.

V.-AGRICULTURE.-Cultivation of Peanuts.

VI. CHESS RECORD,-Biographical Sketch of J. H. Finlinson, Hudders feld, England, with Portrait and two of his Problems. Problem by
S. LorD - Game between J. H. FINsinson and T. S. Lord.-Game between J. H. Finlinson and T. Bailex, with
notes.-West Yorkshire Chess Association.- Notice to Correspondents. - Solutions to Problems.

arRested development.

The interest excited by Von Chauvin's recent observations upon the axolotl seems to be somewhat in excess of lotl is not the only creature whose development has been rapidly carried forward from a stage, permanently low in the natural state, to another and higher one, in consequence
of human interference. Nor, as we noticed the other day, were that lady's specimens of the axolotl the first to under go, under observation, the, to them, abnormal transfor mation into fully developed amblystoma. Besides, we are strongly inclined to suspect that, so far from determining or
compelling the evolution of the two which survived he treatment the German lady's attention to her pets was the reverse of helpful. Had they been let alone, it is quite possible that the fatalities would have been fewer and the pro gressive development of the survivors not less remarkable.
For the benefit of those unfamiliar with the creatures in question, we will note here that the transformation alluded to corresponds to that of the water-breathing tadpole into the land inhabiting and air-breathing frog. Seventy years ago Cuvier suggested that all siredons (like the axolotl) might in reality be larval salamanders, that is, the tadpole stage of higher batrachians. The observations of Dumèril upon numerous specimens of axolotl, bred in the Natural Historical Museum at Paris, proved the old suspicion to be habitat-the Lake of Mexico, and neighboring mountain habitat-the Lake of Mexico, and neighboring mountain
lakes-the axolotl is, so far as known, always an inhabitant of the water. The specimens transported to Paris remained unchanged; but some of their offspring passed on to a higher stage of development, developing lungs in place of branchia, and becoming perfect amblystoma, hitherto re-
garded as belonging to a distinct family. Why all did not complete the same course of development was a mystery to Dumèril (whose observations were published in Comptes Rendus, 1865 and 1867); but a possible explanation was sug gested by observations made soon after by Professor Marsh and other American students, upon several allied species of siredons from the elevated lakes of the Far West. Professor Marsh's observations were published in the American Jour nal of Sci nce for November, 1868.
That distinguished observer had seen Professor Dumèril's
account of the remarkable metamorphosis of the second account of the remarkable metamorphosis of the second
generation of the axolotl (siredon Hecicantes) in Paris; and, during his next summer's excursion to the Rocky Mountains, took pains to secure a number of specimens of siredon lichenoides, Baird, from Lake Como, Wyoming Territory, At the same time a number were secured by Professor Eus-
tis, of Harvard. The two lots were brought to New York tis, of Harvard. The two lots were brought to. New York
together and here divided, part going to New Haven with together and here divided, part going to New Haven with
Professor Marsh, the rest to Cambridge, to be observed by Professors Wyman and Eustis. Professor Marsh's specimens made the passage to New Haven without apparent in convenience, either from the long journey or their transference to fresh water, the water of Lake Como being brackish. They fed readily upon worms and insects, and occasionally came to the surface and inhaled air. More rarely an exha
lation occurred, usually under water. On being removed from their native element they showed the same distress as fishe under similar circumstances, although in a much less degree.

The first indications of any change were observed in one of the smaller specimens; and the metamorphosis apparently began during the journey, which lasted about a week. The animal first became spotted and of a darker hue. Then the broad thin membrane along the back, and above and below the tail, was gradually absorbed; the external branchia followed more slowly; the dark spots increased in number; and the animal came more frequently to the surface for air. By the time the swimming and water-breathing appendages were absorbed, and the openings on the neck closed up, the head had undergone marked changes in shape; the eyes had become more convex and prominent; the body had largely decreased in bulk; the thin external skin was shed, and the secretion of mucus from the surface sensibly dimin'shed.
At the same time the animal showed At the same time the animal showed an increasing desire to leave the water, often remaining for some time with its nostrils above the surface, and occasionally made violent struggles to escape. Aided by a heavy rain at night it at
last succeeded, and thus put an end to further observation, just at a time when it had lost the eneric characters of siredon and become a true amblystoma.
A few days later, several other specimens of various sizes began to show signs of transformation. Two were placed in a glass jar, and left in a strong light, and five others were left in a cooler place in the shade. At the end of three weeks the first two had completed the metamorphosis. The others changed less rapidly, or not at all, three completing the metamorphosis in about six weeks, while two showed little or no change, remaining typical siredons. In those the process series of cooler days. Of the specific changes which the specimens underwent in structure, dentition, habits, etc. in passing from the siredon to the amblystoma state, full in formation may be found in Professor Marsh's paper.

At the thme bis specimens were under observation, the specimes taken to Cambridge were being studied by Professors Wyman and Eustis. Only one of the latter was transformed, and change occured much less speedily than those in New Haven. Two, kept by Professor Eustis, es caped during a rain storm, and six days aftersione was found
still alive, though shrivelled up and the branchia partially gone. On being placed in water, it refused food and died. The lateness of the season probably prevented the transfor mation of the others.
In the next number of the American Journal of Science, Professor Silliman contributed a note describing a colony of amblystom in the possession of a person at Cheyenne. The proprietor assured him that when they were received from Lake Como, a few weeks before, they were all in the "fish" state; that they began to change soon after, and in about three weeks were all completely developed into salamanders. That this change ever occurs in Lake Como, there is, so far as we are aware, no evidence. In this connection, Professor Marsh remarks that, in the elevated region where Lake Como is situated (7,000 feet above the sea), although the weather in summer is quite warm, the nights are always cool, and the changes of temperature often sudden and very great; hence the metamorphosis, if it began, would probably pro ceed slowly and be liable to suspension during its various tages. That the animal breeds in the siredon state, like the axolotl, he is quite ready to believe; and he remarks that it is probable that after reproduction the power of complet development would be lost. Here is, perhaps, the explana ion of the persistence in the siredon state of the majority of the specimens of axolotl observed by Dumèril and Von Chauvin.
A legitimate inference from all the facts would seem to be that the siredons of the elevated lakes of Mexico and the United States are amblystoma, whose complete development as been arrested by increasing elevation and consequen climatic change, at a period relatively so recent that they have not.entirely lost their ancestral capacity for becoming fully developed under favorable conditions. The transfer rence of reproduction to the larval state is not an insuper able objection to this inference, since, as Professor Marsh observes, the near approximation in many batrachians of the periods of reproduction and metamorphosis, and the effects (especially upon the latter) of even slight differences of physical conditions, are known to produce remarkable varia tions in the same species, as well as other results, until re ently quite unexpected.
It is well known, for example, that our common large bullfrog (ran pipens) may remain in the larval or tadpole state, in the coldor parts of New England, for many time the normal period; and Professor Wyman once kept the transformation of such tadpoles under arrest for a number of years, the experiment being thwarted at last by an accident, which emptied his tank and killed his specimens. This line of investigation is worth the attention of some of our younger naturalists. It is quite possible that, by a skill ul use of light and temperature, the tadpole stage in the bullfrog may be continued until after the reproductive fac ulty has been developed, and the natural history of siredons paralleled by art.

PROFESSOR TYNDALL ON THE PHENOMENA OF HOMAN LIFE

'Professor Tyndall has recently delivered before the Mid land Institute at Birmingham, England, one of those charac teristic addresses of his which seems to us likely to excite discussion as widespread as that aroused by his famous prayer gauge proposal and the great Belfast speech. The dea that there is no necessity for invoking the supernatura to account for the ordinary phenomena of human life lias already been repeatedly foreshadowed in Professor Tyndall's writings. Nor $\mathrm{h}: \mathrm{s}$ he been at all alone in that view, as it is virtually the same as is held by the majority of scientific easoners of the present time. But in this late address, which, owing to its length, we cannot publish in these col mns, and therefore refer the readers to the pages of the Scientific American Supplement, current issue, where it is printed in full) he crystallizes, so to speak, that opinion and the arguments on which it rests into a compact mass of logical reasoning. With all that clearness, precision, and beauty of language which have rendered him almost without peer as a public lecturer, he places before us a chain of argument, or rather causes his hearers to forge the links themselves, he only acting as guide, and thus enables them o reach for themselves a logical conclusion.
Just as in the opening of a musical work, a suggestion is iven of the themes afterwards to be wrought out, so in his introductory sentences, by which the audience is placed in good humor with themselves and the lecturer, Professor Tyndall manages to shadow forth an instance of absence of free will. Half humorously he deplores the hard fate of modern scientific men, who like himself aredrawn from their quiet laboratories and forced into publicity which is not con ducive to the exercise of their best powers. Unlike Joule and Darwin, who are not dragged from their seclusion and made presidents of associations, he himself is a special suf ferer, but social duties are paramount to his will. With thi much preamble he launches into a splendid account of tha reat theory of modern science, the doctrine of the conserva tion of energy. "There is nothing gratuitous in physical nature," he says, "no expenditure without equivalent gain, no gain without equivalent expenditure. With inexorable constancy the one accompanies the other, leaving no nook or crevice between them for spontaneity to mingle with the pure and necessary play of natural force. Has this uniform ity of nature ever been broken? The reply is, 'Not to the knowledge of natural science.'" Then follows a wealth of illustration to show the universal application of the great law, and through this, step by step, the hearer is led to the

